OVERVIEW

Problem:
- Recent anomaly detection works can hardly learning abnormality representations and distinguishing subtle lesions.
- Existing synthetic based anomaly detection works may produce inconsistent anomalies.

Challenge:
Abnormality Representations.

Method:
- ReSynthDetect, a novel method that combines reconstruction and synthetic features to detect anomalies.
- Consistent anomaly generator capable of producing diverse and consistent synthetic anomalies in fundus images.

Results:
Our experiments reveal significant improvements, with a 9% increase in AUROC on EyeQ and a 17.1% boost in AUPR on IDRiD.

VISUALIZATION

- **Original Image**: Normal fundus to generate lesions.
- **WDMT**
- **DRAEM**
- **ReSAD**
- **Ours**
- **GT**

Abnormal Image

Existing methods WDMT and DRAEM misclassify normal fundus structures as anomalies. ReSAD lacks precise localization, leading to more false positives.

Our method outperforms baseline methods, detecting various lesion types with fine-grained localization. Demonstrates strong generalization across multiple lesion types.

OUR MODEL

- **Stage 1**: We train an autoencoder to reconstruct input images, thereby acquiring reconstruction features.
- **Stage 2**: Guided by these reconstruction features, we develop a localization network dedicated to the proxy task of localizing synthetic anomalies.

EXPERIMENT

- **Method**
 - fAnoGAN
 - MemAE
 - WNet
 - DRAEM
 - Les2Void
 - Ours

- **AUROC**
 - 0.75
 - 0.74
 - 0.77
 - 0.82
 - 0.90
 - 0.93

- **ACC**
 - 0.68
 - 0.59
 - 0.56
 - 0.81
 - 0.85
 - 0.85

- **AUPR**
 - 0.04
 - 0.05
 - 0.07
 - 0.25
 - 0.42

Image-level: Our approach surpasses the previous best SOTA method by 9% on EyeQ.

Pixel-level: Our approach yields a 2.6% higher AUROC, 4% higher ACC, and a 17.1% AUPR boost on IDRiD anomaly detection.

ANOMALY GENERATOR

- **Source**: Normal fundus to generate lesions.
- **Fusion**: Fusion map for consistent anomaly.
- **Mask**: Random Perlin noise for shape diversity.

LOSS FUNCTION

- **Reconstruction Loss for Stage One**:
 \[L_{\text{Rec}} = ||D_r(E_r(I)) - I||_2^2. \]
 where \(E_r \) and \(D_r \) denote encoder and decoder of the reconstruction network.

- **Focal Loss for Stage Two**:
 \[-(1 - p)^\tau \log(p), \quad M_{G,x,y}^1 = 1, \]
 \[-p^{\tau} \log(1 - p), \quad M_{G,x,y}^0 = 0. \]
 where \(p \) represents the probability of anomaly at position \((x, y)\) predicted by the model, and \(\tau \) is a tunable focusing parameter.