

OVERVIEW

Problem: •Recent anomaly detection works can hardly learning abnormality representations and distinguishing subtle lesions

• Existing synthetic based anomaly detection works may produce *inconsistent anomalies*.

Challenge: Abnormality Representations. Method: • ReSynthDetect, a novel method that combines *reconstruction* and *synthetic* features to detect anomalies.

•Consistent anomaly generator capable of producing *diverse and consistent* synthetic anomalies in fundus images.

Results: Our experiments reveal significant improvements, with a 9% increase in AUROC on EyeQ and a 17.1% boost in AUPR on IDRiD.

Our method outperforms baseline methods, detecting various lesion types with fine-grained localization. Demonstrates strong generalization across multiple lesion types.

RESYNTHDETECT: A FUNDUS ANOMALY DETECTION NETWORK WITH RECONSTRUCTION AND SYNTHETIC FEATURES JINGQI NIU, QINJI YU, SHIWEN DONG, ZILONG WANG, KANG DANG[†], XIAOWEI DING[†] CORRESPONDING AUTHORS

Stage 1: We train an autoencoder to reconstruct input images, thereby acquiring reconstruction features. Stage 2 : Guided by these reconstruction features, we develop a localization network dedicated to the proxy task of localizing synthetic anomalies.

EXPERIMENT

ethod	0&1	0&2	0&3	0&4	0&all
noGAN	0.50	0.49	0.52	0.57	0.51
ЛKD	0.58	0.54	0.62	0.70	0.54
RAEM	0.58	0.65	0.74	0.71	0.61
s2Void	0.56	0.62	0.87	0.90	0.63
Durs	0.55	0.76	0.94	0.91	0.72

•Image-level:Our approach surpasses the previous best SOTA method by 9% on EyeQ.

lethod	AUROC	ACC	AUPR
noGAN	0.75	0.68	0.04
ſemAE	0.74	0.59	0.05
VDNet	0.77	0.56	0.07
RAEM	0.82	0.74	0.10
ReSAD	0.90	0.81	0.25
Ours	0.93	0.85	0.42

• **Pixel-level**: Our approach yields a 2.6% higher AUROC, 4% higher ACC, and a 17.1% AUPR boost on IDRiD anomaly detection.

LOSS FUNCTION

• Reconstruction Loss for Stage One:

where *p* represents the probability of anomaly at position (x, y) predicted by the model, and τ is a tunable focusing parameter.

ANOMALY GENERATOR PipeLine Random Augmentation & Crop **Source Image Training Se** Self-Mix Paste **Target Image** Anomaly Visualization

Source : Normal fundus to generate lesions. **Fusion** : Fusion map for consistent Anomaly. Mask : Random Perlin noise for shape diversity.

 $L_{Rec} = \|D_r(E_r(I)) - I\|_2^2.$

where E_r and D_r denote encoder and decoder of the reconstruction network.

• Focal Loss for Stage Two:

 $-(1-p)^{\tau}\log(p), \quad M_G^{x,y} = 1,$ $-p^{\tau} \log(1-p), \quad M_G^{x,y} = 0.$