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Qualitative Results

Figure 4. Pixel-level infilling results. Context frames are marked with black outlines. Top & Middle: same dataset; Bottom: cross dataset.
Figure 3. Optical flow prediction results. Context flows  are marked with black outlines.

Comparison with Baselines
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Method
By Frame By Video

SSIM↑ PSNR↑ LPIPS↓ FVD↓

FILM [1] 0.7571 22.85 0.1244 -

QVI [2] 0.7254 22.13 0.1281 1206.89

Ours 0.8051 22.97 0.1310 1104.69

Figure 5. Qualitative comparison with baselines.

Table 1. Quantitative comparison with baselines on the UCF101 test set..
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Video infilling: generate visually smooth and 
plausible intermediate frames in between 
given context frames with large temporal gap.

Major challenges:
§ Significant motion change between 

given contexts
§ Uniform assumption may not hold

Model should learn robust motion dynamics
↓

Masked Modeling!
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Figure 1: Illustration of video infilling context frames.

Figure 2: Framework of our proposed method.

Preprocessing Masked Modeling Postprocessing

Get quantized optical flow tokens
• Off-the-shelf flow estimator
• Pretrained optical flow VQ-GAN

Mask-and-Reconstruct
• Specially designed infilling mask Non-learnable bi-directional fusion


