Motivation

Adapting a source-trained detector to an unlabelled target domain.

Challenges of UDA in object detection:
- Distribution mismatch across domains.
- Error accumulation (i.e., false positives as pseudo-labels) during self-training.
- No target annotations.
- Calibration: model detection thresholds across domains may differ due to domain gap.

Our Approach

Self-supervision with challenging composite images.

- **What is DACA?** An UDA approach that composes target images via random augmentations (only during training phase) and leverages self-training to adapt the model to the target domain.
- **Why are the images challenging?** Because they stem from random augmentations, yet they present new-to-learn knowledge for the detector.

Step 1: Detect

Draw pseudo-detections from the target image.

Step 2: Augment

Random augmentations of the most confident target region (i.e., average confidence of all the detections) target loss increments knowledge towards the target $\ell = \ell_S + \ell_T$.

Step 3: Compose

Combine the generated augmentations into a composite image.

Step 4: Adapt

Backpropagate total loss. Source loss maintains source knowledge whilst target loss increments knowledge towards the target $\ell = \ell_S + \ell_T$.

Results

DACA is superior to SOTA in two adaptation scenarios.

Adaptation scenarios & datasets:
- Weather: Cityscapes → Foggy Cityscapes
- Cross-camera: KITTI → Cityscapes
- Synthetic2Real: Sim10K → Cityscapes

Qualitative results:
- Detection performance (AP) for the Car class.
- Detection performance (AP) for the C - F adaptation benchmark.

Ablations:
- List of augmentations
- Effect of transformations
- Effect of grid layout

References:

Acknowledgements:
We are grateful for the support by European Union’s Horizon Europe research and innovation programme under grant agreement No. 101054943, project ACE-HARD (Smart Grading, Handling and Packaging Solutions for Soft and Deformable Products in Agile and Reconfigurable Lines).