

Detect, Augment, Compose, and Adapt: Four Steps for Unsupervised Domain Adaptation in Object Detection

Mohamed Lamine Mekhalfi, Davide Boscaini, Fabio Poiesi

Fondazione Bruno Kessler {mmekhalfi, dboscaini, poiesi}@fbk.eu

github.com/MohamedTEV/DACA

Motivation

Adapting a source-trained detector to unlabelled target domain

What is unsupervised domain adaptation in object detection (UDA)? Adapt a detector by leveraging source data (images

& annotations from domain A) and target data (only images, from domain B).

Offline training procedure:

Online training procedure: Unsupervised domain adaptation with source (images&groundtruth) and target (only images)

Challenges of UDA in object detection:

- Distribution mismatch across domains.
- Error accumulation (i.e., false positives as pseudo-labels) during self-training.
- No target annotations.
- Calibration: model detection thresholds across domains may differ due to domain gap.

DACA vs ConfMix [1]:

ConfMix: Mixes source and target images **VS DACA:** Does not mix but composes target images.

Contributions:

- DACA is the first alternative to mix up approaches that does not mix images from different domains, but instead generates difficult and informative composite images only from the unsupervised target images.
- DACA generates the composite image based on augmented versions of the target image region with the most confident detections, making the adaptation more effective.

Our Approach

Self-supervision with challenging composite images

What is DACA? An UDA approach that composes target images via random augmentations (only during training phase) and leverages self-training to adapt the model to the target domain.

Pixel value

Why are the images challenging? Because they stem from random augmentations, yet they present new-to-learn knowledge for the detector.

Step1: Detect

 \mathbf{X}_T

Step 2: Augment

Random augmentations of the most confident target region (i.e.,

Step 3: Compose

\mathbf{P}_T Source knowledge

Maintain source supervision to prevent catastrophic forgetting [2] Source knowledge is maintained during adaptation via consistency loss w.r.t source

Step 4: Adapt

 Φ_{Θ}

Backpropagate total loss. Source loss maintains source knowledge whilst target loss increments knowledge towards the target

 $\ell = \ell_S + \ell_T$

Target knowledge

Results

DACA is superior to SOTA in two adaptation scenarios

Adaptation scenarios & datasets:

Weather Cityscapes → Foggycityscapes

KITTI → Cityscapes **Cross-camera**

References:

 $(\tilde{\mathbf{X}}_T, \tilde{\mathbf{P}}_T)$

Synthetic2Real Sim10K → Cityscapes

Quantitative results: Detection performance (AP) for the Car class.

Method	Detector	Backbone	S→C	K→C	C→F	Average
Source only	YOLOv5	Darknet53	50.4	42.9	54.9	49.4
Target only	YOLOv5	Darknet53	69.5	69.5	67.9	69.0
ConfMix [1]	YOLOv5	Darknet53	56.2	51.6	63.0	56.9
DACA (ours)	YOLOv5	Darknet53	60.6	54.2	63.0	59.3

Detection newformance (AD) for the C. F. adoptation handbrook

Detection performance (AP) for the $C \rightarrow F$ adaptation benchmark.											
Method	Detector	Backbone	Person	Rider	Car	Truck	Bus	Train	Motorcycle	Bicycle	mAP
Source only	YOLOv5	Darknet53	39.2	38.0	54.9	12.4	33.1	06.2	19.9	33.6	29.7
Target only	YOLOv5	Darknet53	45.6	43.0	67.9	30.2	48.0	39.4	30.3	37.5	42.7
ConfMix [1]	YOLOv5	Darknet53	44 .0	43.3	63.0	30.1	43.0	29.6	25.5	34.4	39.1
DACA (ours)	YOLOv5	Darknet53	41.9	40.8	63.0	29.4	42.2	37.2	27.8	33.0	39.4
A											

Ablations:

Source knowledge

List of aug	ions			Effect of transformations					Effect of grid layout					
Acronym	Transf	ormatio	n		Trans.	C→F	K→C	S→C	Avg.	Layout	C→F	K→C		
HF	Horizo	HorizontalFlip				33.5	52.8	57.4	47.9	3x3	37.8	51.2		
RC	BBoxS	afeRand	omCrop		HF	38.0	52.9	59.7	50.2	2x3	38.5	51.7		
В	Blur				RC	34.3	52.2	59.4	48.7	3x2	38.6	53.6		
CJ	ColorJitter				В	35.9	53.2	58.4	49.2	2x2	39.4	54.2		
D	Downs	scale			CJ	34.6	52.5	58.2	48.5		• Augmentation			
BC	Rando	mBrightı	nessCor	ıtrast	D	35.3	54.1	59.8	49.8	- Au				
Effect of the number of augmented regions					s BC	33.9	52.6	57.5	48.0	to	to produce			
#regions	C→F	K→C	S→C	Avg.	HF+B	38.9	53.9	59.3	50.7		ages to	perfo		
1	35.4	51.5	56.6	47.8	HF+D	35.4	53.3	56.7	48.5		training. To address the positive acc			
2	38.3	52.2	58.5	49.7	D+B	36.8	53.5	59.9	50.0					
3	39.1	53.1	60.2	50.8	HF+D+B	37.8	54.0	57.1	49.6	tra	ansfer t	echniq		
4	39.4	54.2	60.6	51.4	All	39.4	54.2	60.6	51.4	ap	applied to less			

Qualitative examples:

Layout $C \rightarrow F$ $K \rightarrow C$ $S \rightarrow C$ Avg.

54.2

Conclusions

Augmentation is a efficient way

To address the problem of false

applied to lessen style shift.

to produce challenging target

images to perform UDA via self-

positive accumulation, style-

transfer techniques [3] can be

57.7

58.7

59.9

60.6

49.6

51.4

Acknowledgement: We are very grateful to the support by European Union's Horizon Europe research and innovation programme under grant agreement No. 101092043, project AGILEHAND (Smart Grading, Handling and Packaging Solutions for Soft and Deformable Products in Agile and Reconfigurable Lines).

[1] G. Mattolin, L. Zanella, E. Ricci, and Y. Wang. ConfMix: Unsupervised Domain Adaptation for Object Detection via Confidence-based Mixing. In WACV, 2023. [2] R. Kemker, M. McClure, A. Abitino, T. Hayes, and C. Kanan. Measuring catastrophic forgetting in neural networks. In AAAI, 2018.

[3] Y. Yang and S. Soatto. FDA: Fourier Domain Adaptation for Semantic Segmentation. In CVPR, 2020.