2023 20<sup>th</sup> - 24<sup>th</sup> November 2023, Aberdeen, UK

## PROBLEM

Typical KD methods use regularization while pushing the student to **imitate** the feature geometry of the teacher.



----

: teacher knowledge propagation

: inter-class relationships captured by the teacher

Considering the architectural differences in between, forcing the student to imitate the teacher's responses would be demanding, especially for the intermediate layers.

## METHOD: FORMULATION

Key Idea: Learn the semantic entities that the teacher finds useful and **exploit** them in feature transform, enabling us to feed forward the knowledge during inference as well.

Given a set of matching kernels  $\omega_k$  and features  $x_i$  at spatial location *i*, we define feature embedding by template matching as:



Solver (see paper for details): 1x1-BN-ReLU-**1x1** is equivalent to feature embedding by template matching.

## **Proposed KD Layer:**



![](_page_0_Figure_15.jpeg)

 $p_{\mathcal{T}}(\bigstar) = \operatorname{softmax}$ 

![](_page_0_Picture_18.jpeg)

![](_page_0_Picture_19.jpeg)

![](_page_0_Picture_21.jpeg)

![](_page_0_Picture_23.jpeg)

![](_page_0_Picture_26.jpeg)

 $\blacktriangle, \blacksquare, \blacklozenge$  : prototypes

# **BMVC** KNOWLEDGE DISTILLATION LAYER THAT LETS THE STUDENT DECIDE Ada Görgün, Yeti Z. Gürbüz and A. Aydın Alatan { ada.gorgun, yeti, alatan }@metu.edu.tr

![](_page_0_Figure_34.jpeg)

![](_page_0_Figure_35.jpeg)

![](_page_0_Figure_38.jpeg)

 $h_2(\cdot)$  : prototype that is closest

![](_page_0_Figure_40.jpeg)

![](_page_0_Picture_42.jpeg)

Without K-means. Kernels of 3x3 of the residual blocks in architectures such as ResNet correspond to learnable templates (*i.e.*, cluster centers) of some semantic entities.

Employing sub-classes  $(K_{inter})$  for the intermediate layer distillation enables better knowledge transfer.

Naive multi-layer distillation (denoted as (2)) without our KD layer hurts the performance, suggesting that a better way should be found.

|                                           |                | letKD-2 ( $\alpha_{inter} = 0$ ) |                   | letKD-2 ( $\alpha_{inter} = 1$ ) |  |  |  |
|-------------------------------------------|----------------|----------------------------------|-------------------|----------------------------------|--|--|--|
|                                           | $\frac{1}{x}$  |                                  |                   | $\hat{x}$                        |  |  |  |
| Intermediate<br>Layer Top-1 Acc.↑         |                | 52.71                            | 51                | .71 56.36                        |  |  |  |
|                                           |                |                                  |                   |                                  |  |  |  |
|                                           | Me             |                                  | Top-1 Acc.↑       |                                  |  |  |  |
|                                           | 71.59          |                                  |                   |                                  |  |  |  |
| FitNet+KD layer without supervision 71.80 |                |                                  |                   |                                  |  |  |  |
| FitNet+KD layer with supervision 73.36    |                |                                  |                   |                                  |  |  |  |
|                                           |                |                                  |                   |                                  |  |  |  |
| Inter.                                    | $lpha_{inter}$ | Penult.                          | $\alpha_{penult}$ | Top-1 Acc.↑                      |  |  |  |
| $\checkmark$                              | 0              | _                                | 0                 | 70.64                            |  |  |  |
| $\checkmark$                              | 1              | _                                | 0                 | 70.80                            |  |  |  |
| _                                         | 0              | $\checkmark$                     | 0                 | 71.84                            |  |  |  |
| _                                         | 0              | $\checkmark$                     | 1                 | 72.44                            |  |  |  |
| $\checkmark$                              | 0              | $\checkmark$                     | 0                 | 71.70                            |  |  |  |
| $\checkmark$                              | 0              | $\checkmark$                     | 1                 | 72.13                            |  |  |  |
| $\checkmark$                              | 1              | $\checkmark$                     | 0                 | 72.78                            |  |  |  |
| $\checkmark$                              | 1              | $\checkmark$                     | 1                 | 73.27                            |  |  |  |

|                      |                                                   | Heterogeneous                            |                                          |                                                   |                                          |  |  |
|----------------------|---------------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------------|------------------------------------------|--|--|
| 110<br>32            | RN32x4<br>RN8x4                                   | WRN-40-2<br>SNV1                         | RN32x4<br>SNV1                           | RN32x4<br>SNV2                                    | RN50<br>MNV2                             |  |  |
| 31<br>14             | 79.42<br>72.50                                    | 75.61<br>70.50                           | 79.42<br>70.50                           | 79.42<br>71.82                                    | 79.34<br>64.60                           |  |  |
| 15<br>08             | <b>78.08</b><br>-<br>75.88                        | 76.95<br>75.60<br>76.75                  | 77.18<br>-<br>76.28                      | 77.78<br>-<br>77.09                               | 68.91<br>68.37<br>69.81                  |  |  |
| 40<br>14<br>62<br>20 | 76.70<br>$\mp 0.06$<br><b>77.09</b><br>$\mp 0.18$ | $76.93 \\ \mp 0.16 \\ 77.08 \\ \mp 0.12$ | $76.65 \\ \mp 0.24 \\ 77.30 \\ \mp 0.12$ | 77.75<br>$\mp 0.17$<br><b>77.95</b><br>$\mp 0.06$ | $69.97 \\ \mp 0.18 \\ 70.39 \\ \mp 0.23$ |  |  |
| KD                   | DKD                                               | QUEST                                    | letKI                                    | <b>D-1</b> let                                    | tKD-2                                    |  |  |
| 0.66<br>9.88         | 5 71.70<br>8 90.41                                | 71.67<br>90.67                           | 72.3<br>91.0                             | 3 7<br>6 9                                        | 72.38<br>91.15                           |  |  |
| 8.58<br>8.98         | 8 72.05<br>8 91.05                                | 72.54<br>91.13                           | 73.7<br>91.8                             | 787<br>79<br>79                                   | 73.98<br>92.00                           |  |  |