
Ada Görgün Yeti Z. Gürbüz A. Aydın Alatan

Supplementary Material for "Knowledge Distillation
Layer that Lets the Student Decide"

1 Extended Empirical Study
In this section, we provide comparisons of our method to additional KD methods,
along with the evaluation of our method on Tiny-ImageNet. We also provide more
ablations to offer deeper insights into the efficacy of our method.

1.1 Results on More Datasets and Methods
In this section, we provide the extended results in Tabs. 1 to 3 for the evaluations
on CIFAR-100 [12], ImageNet [4] and Tiny-ImageNet [13], respectively. We compare
our method against KD [9], FitNet [16], AT [25], AB [8], FSP [23], SP [20], VID [1],
CRD [19], DKD [27], SimKD [3], TDD [18] and QUEST [11]. Overall, the results
demonstrate the effectiveness of our methods letKD-2 and letKD-1 for all the datasets
by being the first and the second best compared to other KD alternatives except
with the SimKD method in RN32x4-RN8x4 on CIFAR-100 for which the relevant
discussion is provided in the main paper.

Table 1: Average top-1 accuracies on CIFAR-100 over 5 trials. Bold: best in its
category.

Archs. → Homogeneous Heterogeneous
Teacher WRN-40-2 WRN-40-2 RN56 RN110 RN110 RN32x4 WRN-40-2 RN32x4 RN32x4 RN50
Student WRN-16-2 WRN-40-1 RN20 RN20 RN32 RN8x4 SNV1 SNV1 SNV2 MNV2

Methods ↓ 75.61 75.61 72.34 74.31 74.31 79.42 75.61 79.42 79.42 79.34
73.26 71.98 69.06 69.06 71.14 72.50 70.50 70.50 71.82 64.60

KD 74.92 73.54 70.66 70.67 73.08 73.33 74.83 74.07 74.45 67.35
FitNet 73.58 72.24 69.21 68.99 71.06 73.50 73.73 73.59 73.54 63.16

AT 74.08 72.77 70.55 70.22 72.31 73.44 73.32 71.73 72.73 58.58
AB 72.50 72.38 69.47 69.53 70.98 73.17 73.34 73.55 74.31 67.20
FSP 72.91 - 69.95 70.11 71.89 72.62 - - - -
SP 73.83 72.43 69.67 70.04 72.69 72.94 74.52 73.48 74.56 68.08

VID 74.11 73.30 70.38 70.16 72.61 73.09 73.61 73.38 73.40 67.57
CRD 75.48 74.14 71.16 71.46 73.48 75.51 76.05 75.11 75.65 69.11
CRD
+KD

75.64 74.38 71.63 71.56 73.75 75.46 76.27 75.12 76.05 69.54
DKD 76.24 74.81 71.97 - 74.11 76.32 76.70 76.45 77.07 70.35

SimKD 76.06 74.92 68.95 69.35 72.15 78.08 76.95 77.18 77.78 68.91
TDD 75.01 74.04 71.53 - - - 75.60 - - 68.37
TDD
+CRD

75.71 74.35 71.88 - - - 76.34 - - 69.22
QUEST 76.10 74.58 71.84 71.89 74.08 75.88 76.75 76.28 77.09 69.81

letKD-1 76.29
∓0.15

75.01
∓0.09

72.44
∓0.24

72.68
∓0.31

74.40
∓0.14

76.70
∓0.06

76.93
∓0.16

76.65
∓0.24

77.75
∓0.17

69.97
∓0.18

letKD-2 76.56
∓0.22

75.19
∓0.13

73.27
∓0.16

73.38
∓0.14

74.62
∓0.20

77.09
∓0.18

77.08
∓0.12

77.30
∓0.12

77.95
∓0.06

70.39
∓0.23

Table 2: Top-1 and top-5 accuracies on ImageNet. Setting (a): Teacher and student
models are selected as RN34-RN18. Setting (b): Teacher and student models are
selected as RN50-MNV2. Bold: best in its category.

Setting Teacher Student KD AT+KD DKD QUEST letKD-1 letKD-2

(a) Top-1 73.31 69.75 70.66 70.70 71.70 71.67 72.33 72.38
Top-5 91.42 89.07 89.88 90.00 90.41 90.67 91.06 91.15

(b) Top-1 76.13 68.87 68.58 69.56 72.05 72.54 73.78 73.98
Top-5 92.86 88.76 88.98 89.33 91.05 91.13 91.81 92.00

1

Citation
Citation
{Krizhevsky etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

Citation
Citation
{Le and Yang} 2015

Citation
Citation
{Hinton, Vinyals, and Dean} 2015

Citation
Citation
{Romero, Ballas, Kahou, Chassang, Gatta, and Bengio} 2014

Citation
Citation
{Zagoruyko and Komodakis} 2017

Citation
Citation
{Heo, Lee, Yun, and Choi} 2019

Citation
Citation
{Yim, Joo, Bae, and Kim} 2017

Citation
Citation
{Tung and Mori} 2019

Citation
Citation
{Ahn, Hu, Damianou, Lawrence, and Dai} 2019

Citation
Citation
{Tian, Krishnan, and Isola} 2020

Citation
Citation
{Zhao, Cui, Song, Qiu, and Liang} 2022

Citation
Citation
{Chen, Mei, Zhang, Wang, Feng, and Chen} 2022

Citation
Citation
{Song, Zhang, Wang, Xue, Chen, Sun, Tao, and Song} 2021

Citation
Citation
{Jain, Gidaris, Komodakis, P{é}rez, and Cord} 2020

Table 3: Average top-1 accuracies on Tiny-ImageNet over 3 trials. Bold: best in its
category.

Archs. → Homogeneous Heterogeneous
Teacher WRN-40-2 WRN-40-2 RN56 WRN-40-2 RN50
Student WRN-16-2 WRN-40-1 RN20 SNV1 MNV2

Methods ↓ 61.26 61.26 58.34 61.26 68.97
57.17 56.25 52.66 60.52 58.35

KD 59.16 57.75 53.04 64.80 58.68
FitNet 57.75 - 51.73 - 57.55

AT 58.71 57.41 54.01 63.90 50.91
FSP 57.33 - 53.55 - -
SP 55.69 53.74 54.03 64.62 58.11

VID 58.51 57.45 53.20 63.58 57.50
TDD 59.22 58.42 54.45 65.27 59.09
TDD
+CRD

59.53 59.20 54.85 65.50 59.72
QUEST 59.86 59.13 54.53 65.23 59.81

letKD-1 61.42
∓0.36

59.75
∓0.50

55.54
∓0.33

65.70
∓0.42

60.69
∓0.17

letKD-2 62.21
∓0.17

60.59
∓0.27

57.35
∓0.46

66.15
∓0.50

61.15
∓0.46

1.2 More Ablations

Figure 1: Effect of Kinter

Hyperparameters. Our KD layer intro-
duces 4 additional hyperparameters which
are {αinter,αpenult} from Fig. 2 in the
main paper, Kpenult the number of cluster
centers used in the penultimate layer, and
Kinter the number of sub-classes for each
class used in the intermediate layer. We use
Kpenult = 4096 to be directly comparable
with [11]. For Kinter, through our analy-
sis on CIFAR-100 with RN56-RN20, plot-
ted in Fig. 1, we observe a relatively stable
performance for Kinter > 8. Hence, we set

Kinter = 8 for the rest of the experiments. Finally, for the selection of {αinter,αpenult},
since we use normalized convolution with a learnable scale for the 1x1 to jointly learn it
(§ 2.2), we set (αinter,αpenult) = (1,1) in all models except for RN50-MNV2 in CIFAR-
100 and Tiny-ImageNet. Essentially, in both letKD-1 and letKD-2 experiments, (i)
for CIFAR-100, we arrange αpenult = 0.1 and αinter = 0.2, (ii) for Tiny-ImageNet,
we arrange αpenult = 0.5 and αinter = 1.

Table 4: Effect of our KD layer on intermediate layer classification performance on
CIFAR-100 with RN56-RN20

letKD-2 (αinter = 0) letKD-2 (αinter = 1)
x x̂

52.71 51.71 56.36

Feature geometry. Towards the understanding of the impact of the proposed KD
layer for intermediate layer (i.e., lower level) supervision, we measure the classification

2

Citation
Citation
{Jain, Gidaris, Komodakis, P{é}rez, and Cord} 2020

capacity of the student trained with our methods in Tab. 4 with αinter representing
the inclusion of our layer. In this table, x and x̂ represent the input and the output
of the KD layer as in Fig. 2 in the main paper. To obtain the classification scores,
we perform global average pooling to the extracted intermediate features of the
trained student and fit a linear classifier using LDA. This analysis is required to
see whether the student is able to exploit the teacher’s supervision according to
its own discrimination capacity. As seen from Tab. 4, the student attains 52.71 %
accuracy when it is trying to imitate the teacher (αinter = 0). When our layer is
included (αinter = 1), even though the input features x perform 1% poorer compared
to αinter = 0, the output features x̂ strongly show the advantage of letting the student
freely exploit the teacher rather than directly forcing to imitate it.

Table 5: Effect of the included parts in
letKD-2

Inter. αinter Penult. αpenult Top-1 Acc.
✓ 0 - 0 70.64
✓ 1 - 0 70.80
- 0 ✓ 0 71.84
- 0 ✓ 1 72.44
✓ 0 ✓ 0 71.70
✓ 0 ✓ 1 72.13
✓ 1 ✓ 0 72.78
✓ 1 ✓ 1 73.27

Effect of the KD layer. To fur-
ther validate exploiting the teacher’s
knowledge to shape the intermediate
features, we analyze the effect of en-
hancing the student’s features with the
weighted combinations of the learned
semantic vectors. Namely, we set α = 0
in Fig. 2 in the main paper to lift
the knowledge-based feature transform.
With the RN56-RN20 pair, we evaluate
all possible settings in CIFAR-100 and
provide the results averaged over 5 trials in Tab. 5. We observe that α = 1 consistently
improves the performance whereas α = 0 consistently degrades, especially in the
intermediate layer. Based on these results, we can conclude that the student can
effectively decide to exploit the semantically meaningful information coming from the
teacher to shape the embedding space rather than directly imitating the feature space.
The addition of our layer substantially improves the performance, especially when
multi-layer supervision is involved. Nevertheless, it is important to quantitatively
show the computational cost of the inclusion of our KD layer. The computation
rises merely by adding 1x1-BN-ReLU-1x1 convolution block, resulting in about 2%
longer sec per image in intermediate layers and 2%-20% in the penultimate layer,
depending on the number of cluster centers, K, ranging from 64 to 4096. Therefore,
our proposed method remains computationally feasible.

Source of effectiveness of the KD layer. To reduce the confounding of factors
other than the proposed method, we examine whether the performance increase is
coming from the method or the capacity increase introduced by our KD layer. Hence,
in Tab. 6, we compare the performance of the three methods as FitNet, FitNet
equipped with our KD layer at the penultimate layer with and without supervision.
The experiments are done using CIFAR-100 with the teacher-student pair selected
as RN110-RN32 and they are averaged over 5 trials. We trained FitNet using the
stage-2 outputs and included our KD layer at the output of the penultimate layer. We
highlight the inclusion of supervision (i.e., distillation loss) using the notations "with"
and "without". These results show that even though the capacity of the student is
marginally increased due to our KD layer, the major contribution to the performance
occurs upon combining it with our supervision.

3

Table 6: Effect of the impact of the KD layer on performance improvement considering
the capacity increase

Methods Top-1 Acc
FitNet 71.59

FitNet+KD layer without supervision 71.80
FitNet+KD layer with supervision 73.36

Figure 2: Sample images with the teacher sub-class annotations marking the center
of each spatial location. Each color corresponds to a distinct sub-class. On the right
of each image, the histogram for the sub-class assignments are plotted, where x-axis
corresponds to subclass indices. The indices of the sub-classes associated with its
super-class lie on the right of the index ticked by the class label.

Transferred knowledge. To support the effectiveness of the proposed intermediate
layer supervision, we demonstrate the extracted information from the teacher on
inter-category relations between the different sub-classes and category-specific patterns
for the images in Fig. 2 using CIFAR-10 with RN56. We mark the center of each
patch with respect to its sub-class (denoted by its color). We also provide annotation
of a sub-class (pT (i) = p(h2(zi) | h1(zi,y)) in § 4.2.2 in the main paper) on the right,
which shows how discriminating that patch for the teacher for the main task. We
observe shared entities such as tire for truck and car, leg for horse and deer, fur for
cat and dog. We are also able to observe discriminative patterns such as face of a

4

cat and a dog. Through exploiting this information, the templates of the student
(i.e., 1x1 kernels) adapt to those patterns that the teacher finds useful to discriminate
categories. Besides uniquely differentiating discriminative patterns, the student also
learns to acknowledge the shared entities by combining them with their learned
semantic features. That way, the uninformative patterns such as fur that have less
peaky distribution can be exploited to represent coarse categories, e.g., belonging to
animals, or can be completely discarded by the student if their matching scores drop
below the average due to following an almost uniform distribution.

2 Empirical Study Details
In the following sections, we detail our experimental setup, including the utilized
datasets, and fully disclose our implementation specifics.

2.1 Reproducibility
We provide full details of our experimental setup and recapitulate the implementation
details for the sake of complete transparency and reproducibility. Code is available
at: letKD Framework

2.2 Experimental Setup
Datasets. We adopted three benchmark image classification datasets to extensively
evaluate our method, which are also widely used in KD literature. These datasets
include CIFAR-100 [12], which contains 100 classes with 50K training images and 10K
test images of size 32x32; Tiny-ImageNet [13], which contains 200 classes with 500
training images, 25 validation images and 25 test images of size 64x64 for each class;
ImageNet [4], which consists over 1.2 million images for training and 50K images for
validation which are distributed over 1000 classes. For data augmentation, we use
standard operations including normalization that are commonly used in other KD
algorithms [11].

Implementation Details. We perform our experiments on various architectures
including ResNet (RN) [6, 7], Wide ResNet (WRN) [24], MobileNet (MNV2) [17]
and ShuffleNet (SNV1/V2) [14, 26]. We adopt the framework implemented by [11]
in PyTorch [15] to make a fair and unbiased evaluation of our method as well as
comparisons with the other invented methods. For the results in Tabs. 1 to 3, we use
the results of the relevant methods from [11, 18, 27]. For SimKD [3], we use their
official implementation to obtain the corresponding results.

Specifically, for all datasets, we adopt the SGD optimizer with 0.9 Nesterov
momentum. For CIFAR-100 and Tiny-ImageNet, we trained for 240 epochs in which
the learning rate is divided by 10 at 150th, 180th and 210th epochs. For heterogeneous
(MNV2 and SNV1/V2 as students) trainings, we set the initial learning rate as 0.01
and for other architectures, we set the initial learning rate as 0.05.

For all evaluations on ImageNet, we trained for 100 epochs with an initial learning
rate 0.1, which is divided by 10 at 30th, 60th and 90th epochs.

5

Citation
Citation
{Krizhevsky etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{Le and Yang} 2015

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

Citation
Citation
{Jain, Gidaris, Komodakis, P{é}rez, and Cord} 2020

Citation
Citation
{He, Zhang, Ren, and Sun} 2015

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Zagoruyko and Komodakis} 2016

Citation
Citation
{Sandler, Howard, Zhu, Zhmoginov, and Chen} 2018

Citation
Citation
{Ma, Zhang, Zheng, and Sun} 2018

Citation
Citation
{Zhang, Zhou, Lin, and Sun} 2018

Citation
Citation
{Jain, Gidaris, Komodakis, P{é}rez, and Cord} 2020

Citation
Citation
{Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, and Chintala} 2019

Citation
Citation
{Jain, Gidaris, Komodakis, P{é}rez, and Cord} 2020

Citation
Citation
{Song, Zhang, Wang, Xue, Chen, Sun, Tao, and Song} 2021

Citation
Citation
{Zhao, Cui, Song, Qiu, and Liang} 2022

Citation
Citation
{Chen, Mei, Zhang, Wang, Feng, and Chen} 2022

https://github.com/adagorgun/letKD-framework

Formulation of 1x1 convolution. In the proposed KD layer including 1x1-BN-
ReLU-1x1 block, we employ 1x1 operations as normalized 1x1 convolutions with
a learnable scale, i.e., the kernels are ℓ2 normalized and scaled. For us, the two
normalized convolutions serve distinct purposes. For the first 1x1, we utilize this by
first normalizing our input features and kernels since we want to measure the cosine
similarity between them (i.e., their alignment). For the second 1x1, we try to decrease
the dependency of the hyperparameter {αinter,αpenult} through the normalized and
scaled outputs to have a more stable learning. Owing to this mechanism, we ease the
process of adding the importance and attention gathered from 1x1-BN-ReLU-1x1 to
the features at the shortcut connection.

Heterogeneous distillation cases. For heterogeneous cases, we transform the
features of the teacher before obtaining the soft assignments by applying an additional
average pooling operation before quantization (K-means operation) to align its spatial
dimensions with the predictions of the student. For instance, at the penultimate layer,
RN32x4 and WRN-40-2 have 8x8 feature maps, SNV1/V2 and RN50 have 4x4 feature
maps, and MNV2 has 2x2 feature maps. Hence, the spatial dimensions between the
teacher and the student should be aligned to apply the distillation loss properly.

3 Implementations with Pseudo-codes

Algorithm 1 TEACHER PENULTIMATE LAYER KD
offline:

input: X = {xi}i∈[XT], Kpenult, θt //all training images, # of cluster centers,
//parameters of the teacher

F ← f
(91)
t (X;θt) //teacher’s features at the penultimate layer,

//F ∈ R[XT].w.hxd

{ρk}k∈[Kpenult]←KMeans(F,Kpenult) //clustering operation to the teacher’s features

return {ρk}k∈[Kpenult] //cluster centers in the quantized space

online:

input: X = {xi}i∈[b],{ρk}k∈[Kpenult],θt //batch of images, cluster centers, parameters
//of the teacher

F ← f
(91)
t (X;θt) //teacher’s features at the penultimate layer,

//F ∈ R[b].w.hxd

d← [∥F −ρk∥22]k∈[Kpenult] //distance of each spatial location to the
//cluster centers

pT ← softmax(d) //soft assignments of the teacher for each
//spatial location

return pT //soft assignments of the teacher

6

Algorithm 2 TEACHER INTERMEDIATE LAYER KD
offline:

input: (X,Y) = ({xi},{yi})i∈[XT], Kinter, θt, C
//all training image-label pairs, # of sub-classes,
//parameters of the teacher, # of classes

F ← f
(l′)
t (X;θt) //teacher features at l′th layer

WLDA, bLDA← LDA(F,Y) //obtain weight and bias for LDA
FLDA← Conv1x1(F,WLDA, bLDA) //apply LDA, FLDA ∈ R[b].w.hxdLDA

for c = 1 : C do
F c

LDA← FLDA[y = c] //obtain the LDA features belonging to class c

ρc,P c←KMeans(F c
LDA,Kinter) //obtain clusters and predictions through

//K-means clustering
for k = 1 : Kinter do

F k,c
LDA← FLDA[P c = k] //obtain LDA features belonging to sub-class k

//in class c

protk,c←mean(F k,c
LDA) //obtain representative prototype for sub-class

//k in class c

prot←{protk,c}c∈[C]
k∈[Kinter]

{sk,c
T }

c∈[C]
k∈[Kinter]←NNSearch(FLDA,prot)

//apply NN Search between features and
//prototypes

sT ←{sk,c
T }

c∈[C]
k∈[Kinter] //scores for all sub-classes,

//sT ∈ RKinter.CxKinter.C

return sT ,WLDA, bLDA,{ρk
c}

k∈[Kinter]
c∈[C] //scores, LDA parameters, cluster centers

online:

input: (X,Y) = ({xi},{yi})i∈[b],sT ,WLDA, bLDA,{ρk
c}

k∈[Kinter]
c∈[C] ,θt

//batch of image-label pairs, scores, LDA
//parameters, cluster centers, parameters of the
//teacher

FLDA← Conv1x1(f (l′)
t (X;θt),WLDA, bLDA)

//apply LDA to the teacher’s features at l′th layer
//FLDA ∈ R[b].w.hxdLDA

k∗←min([∥FLDA−ρk
Y ∥22]k∈[Kinter]) //assign the closest sub-class cluster index for

//class Y to each spatial location
pT ← sT (k∗) //assign the score of the selected cluster

return pT //soft assignments of the teacher

7

Algorithm 3 STUDENT KD SUPERVISION
online:

input: X = {xi}i∈[b], pT , θs //batch of images, soft assignments of the teacher,
//parameters of the student

F ← f
(l)
s (X;θs) //student’s features at the lth (penultimate or

//intermediate) layer
F̂ ,pS ←KDLayer(F ;θs) //see Fig. 2 in the main paper
LKD←KLDiv(pT ,pS) //distillation loss using teacher’s soft assignments

//and student’s predictions

return F̂ ,LKD //output features of the KD layer, distillation loss

References
[1] Sungsoo Ahn, Shell Xu Hu, Andreas Damianou, Neil D. Lawrence, and Zhenwen

Dai. Variational information distillation for knowledge transfer. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

[3] Defang Chen, Jian-Ping Mei, Hailin Zhang, Can Wang, Yan Feng, and Chun
Chen. Knowledge distillation with the reused teacher classifier. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 11933–11942, June 2022.

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255, 2009.

[5] Ada Gorgun, Yeti Z. Gurbuz, and Aydin Alatan. Feature embedding by template
matching as a resnet block. In 33rd British Machine Vision Conference 2022,
BMVC 2022, London, UK, November 21-24, 2022. BMVA Press, 2022.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. arXiv preprint arXiv:1512.03385, 2015.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings
in deep residual networks. In European conference on computer vision, pages
630–645. Springer, 2016.

[8] Byeongho Heo, Minsik Lee, Sangdoo Yun, and Jin Young Choi. Knowledge
transfer via distillation of activation boundaries formed by hidden neurons.
Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

[9] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531, 2015.

8

[10] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International conference
on machine learning, pages 448–456. PMLR, 2015.

[11] Himalaya Jain, Spyros Gidaris, Nikos Komodakis, Patrick Pérez, and Matthieu
Cord. Quest: Quantized embedding space for transferring knowledge. European
Conference on Computer Vision (ECCV), 2020.

[12] Alex Krizhevsky et al. Learning multiple layers of features from tiny images,
2009.

[13] Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge, 2015.

[14] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2:
practical guidelines for efficient cnn architecture design. In European Conference
on Computer Vision (ECCV), pages 122–138, 2018.

[15] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library, 2019.

[16] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang,
Carlo Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv
preprint arXiv:1412.6550, 2014.

[17] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In The
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
4510–4520, 2018.

[18] Jie Song, Haofei Zhang, Xinchao Wang, Mengqi Xue, Ying Chen, Li Sun, Dacheng
Tao, and Mingli Song. Tree-like decision distillation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 13488–13497, June 2021.

[19] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation
distillation. In International Conference on Learning Representations, 2020.

[20] Frederick Tung and Greg Mori. Similarity-preserving knowledge distillation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019.

[21] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization:
The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022,
2016.

[22] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European
conference on computer vision (ECCV), pages 3–19, 2018.

9

[23] Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim. A gift from knowledge
distillation: Fast optimization, network minimization and transfer learning. In
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 7130–7138, 2017.

[24] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British
Machine Vision Conference 2016. British Machine Vision Association, 2016.

[25] Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention:
Improving the performance of convolutional neural networks via attention transfer.
In International Conference on Learning Representations, 2017.

[26] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An
extremely efficient convolutional neural network for mobile devices. In The
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
6848–6856, 2018.

[27] Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled
knowledge distillation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 11953–11962, June 2022.

Appendix
BN-ReLU as a Soft Maximizer
To strengthen our approximation of BN-ReLU as a soft maximizer considering the
problem:

p|i = argmax
p,q⩾0

q µ+Σkpk ω⊺
kxi s.to q +Σkpk = 1 (A.1)

we start with the explanation of the overall process, where xi represents a local region
i in a feature map x, {ωk ∈Rd}k∈[K] are the 1x1 kernels, and µ is a threshold enabling
to zero out the embedding vector if no kernel matches with at least µ similarity. As
we state in the paper, we make this problem differentiable by employing entropy
smoothing to the problem in (A.1) as:

p|i = argmax
p,q⩾0

q µ+p⊺a|i− 1
ϵ (q logq +p⊺ logp) s.to q +Σkpk = 1 (A.2)

and obtain a soft-max solution:

pk|i = exp(ϵak|i)
exp(ϵµ)+Σk′ exp(ϵak′|i) (A.3)

where ak|i = ω⊺
kxi and ϵ controls the smoothness of p|i. As can be seen from (A.3),

apart from the temperature parameter ϵ, we only need to add an additional dimension
with the value µ to the channels of a|i to mimick the threshold in (A.1). Yet, the
problem here is finding proper µ and ϵ values. Indeed, BN-ReLU is shown to mitigate
that problem in [5] and the equivalence of the solution in (A.3) and BN-ReLU (up to
a scale) is empirically validated.

10

Citation
Citation
{Gorgun, Gurbuz, and Alatan} 2022

We now derive an alternative equivalence to rather explicitly show that replacing
soft-max with BN-ReLU inherently makes the model learn these parameters while
performing a scaled version of soft-max.

Note that BN [10] and its successor counterparts [2, 21, 22] perform activity
normalization using some batch statistics as:

BN(ak) = γk
ak−E[ak]√

Var(ak)
+βk = γkâk +βk (A.4)

which can be interpreted as whitening its input with a learnable scale and bias, where
E[ak] and Var[ak] are calculated using the whole batch.

To employ BN-ReLU as a replacement of (A.2), we first consider the whitened
version of our activations, i.e., âk = ak−E(ak)√

Var(ak)
, to be used in (A.3) and use a scale γk

to make their values around 0 as a′
k = γkâk. Then, when we apply soft-max to a′

k|i,
we can use the first order Taylor series expansion to approximate the unnormalized
soft-max operation applied to them as:

e
a′

k|i ≈ 1+a′
k|i +

a′2
k|i
2! +

a′3
k|i
3! + ...≈ 1+a′

k|i +err (A.5)

where err is an error owing to the higher order terms. When we consider the expression
in (A.3) with the inclusion of temperature ϵ, we can say that for certain k’s, pk|i will
go to zero if exp(ϵak|i) is way smaller than the denominator (sum of all exponential
terms including the effect of the threshold parameter µ) of (A.3). Moreover, since
the soft-max formulation is linearized in (A.5), the output might be negative. Hence,
if we employ the solution in (A.5), the condition that should be satisfied for pk|i to
be non-zero and non-negative would be:

1+a′
k|i +err > th→ 1+a′

k|i +err− th > 0 (A.6)

where the terms {1,th,err} can be combined into a single term β (involving the effect
of µ) as:

a′
k|i +βk > 0→ γkâk|i +βk > 0 (A.7)

Internally, the constraint defined in (A.7) mimicks the function ReLU. When this
constraint is satisfied, the terms γkâk|i +βk of the unnormalized soft-max would be
counted as the corresponding outputs. Hence, when we consider the relationship
between (A.7) and (A.4), if we use BN+ReLU as a replacement of (A.3), we can
simply employ p̂k = max{0,γkâk +βk}, i.e., ReLU, to zero-out the assignment vector
and let BN learn the proper parameters, (βk,γk), using the batch statistics to assess
the poor matching scores. For the pixels with non-zero activations after BN-ReLU,
we can obtain the normalized assignment vector as p̂k/η where η := Σkp̂k. That being
said, we empirically find that, absorbing η into α (Eq. 4.1 in the main paper) and
α into γk, are useful to adaptively put more emphasis on the teacher’s knowledge
according to the matching scores.

11

Citation
Citation
{Ioffe and Szegedy} 2015

Citation
Citation
{Ba, Kiros, and Hinton} 2016

Citation
Citation
{Ulyanov, Vedaldi, and Lempitsky} 2016

Citation
Citation
{Wu and He} 2018

