SynBlink and BlinkFormer: A Synthetic Dataset and Transformer-Based Method for Video Blink Detection Bo Liu¹, Yang Xu¹, Feng Lu^{1,2} ☑

¹ State Key Lab. of VR Technology and Systems, Beihang University, Beijing, China ² Peng Cheng Laboratory, Shenzhen, China

Motivation

• The dataset volume for blink detection remains

relatively small due to the cost of data collection and annotation.

There is still room for improvement in the accuracy of current algorithms.

Contribution

- The Synthetic Data Workflow: A controllable and flexible workflow for synthesizing human video clips with blinks, allowing for the unlimited generation of data with precise labeling.
- SynBlink: The largest video blink dataset available as of now.
- **BlinkFormer:** The first Transformer-based method that performs both blink detection for video clips and estimates the blink strength in frame level.

Synthetic Dataset and Annotation

Generation Workflow of SynBlink Dataset

BlinkFormer: A Transfomer-Based Method

Blink Detection Datasets Overview

SynBlink: A Synthetic Dataset

 50,000 video clips / 13 frames / 350×350 pixels / 126GB / 25085 blinking / 24915 non-blinking.

Advantages:

Large Data Volume: Provide feasibility and convenience for deep learning methods that A blink detection head is used to classify the whole sequence into blink detection result, while another head output the blink strength of each frame.

Result

Comparation on HUST-LEBW dataset

Method	F1	Precison	Recall
Variance Map (ver.) [2]	51.58%	49.03%	54.41%
Variance Map (hor.) [2]	55.53%	52.25%	59.35%
Variance Map (flow.) [2]	47.10%	48.30%	46.02%
Eye Template [5]	33.28%	98.28%	20.12%
Motion Vector [13]	51.58%	49.03%	54.41%
EAR [4]	42.95%	61.15%	33.12%
LRCN [26]	78.52%	69.69%	89.92%
mEBAL [9]	75.42%	67.14%	87.77%
HUST [20]	78.18%	75.82%	80.69%
3D PBNN* [3]	82.03%	78.36%	86.07%
BlinkFormer (Ours)	84.31%	82.06%	86.69%

require a massive amount of data.

Complex Scenarios: Different head postures, head movements, eye sizes, age, ethnicity, gender, light intensity, camera angles, background types. **Accurate Annotations:** Include whether the entire clip blinks or not, keypoints of the eyes in each frame, pupil center positions, and blink strengths.

