

BMVC 2023 Infinite Class Mixup

Thomas Mensink

Pascal Mettes

What is Mixup?

Generate additional samples by interpolating samples:

$$ilde{oldsymbol{x}} = \lambda \, oldsymbol{x}_a + (1\!-\!\lambda) \, oldsymbol{x}_b$$

Mixing of two images

$$ilde{oldsymbol{y}} = \lambda \, oldsymbol{y}_a + (1\!-\!\lambda) \, oldsymbol{y}_b$$

Mixing of one-hot labels

Motivation

Google

Х Х

Image: 40% dog and 60% cat

- Improves accuracy, calibration & out-of-distribution generalization
- Assumption: mixing should be done at output probability level -
- Mixup wants linearity, but its not enforced in classifier space!

Mixup: Classify as 40% dog 60% cat. **Infinite Class Mixup:** Classify this image 100% to the new class: 40% dog and 60% cat.

Mixup with Infinite Classes

Main idea: for each mixed sample, we construct a unique interpolated classifier:

$$oldsymbol{w}_{ ilde{c}} = \lambda \, oldsymbol{w}_a + (1 - \lambda) \, oldsymbol{w}_b = W ilde{oldsymbol{y}}$$

Optimize likelihood of interpolated classes:
 $p(C_{ ilde{oldsymbol{y}}} | ilde{oldsymbol{x}}) \propto \exp(f_{ heta} (ilde{oldsymbol{x}})^{\top} W ilde{oldsymbol{y}})$
via contrastive learning in two ways:

Class-axis Pair-axis

Contrast example against all interpolated classifiers in the batch.

> In the spirit of conventional contrastive learning.

Contrast classifier against all interpolated samples in the batch.

Exists because of the unique construction of each classifier. Not (directly) applicable in Mixup.

Code

available

Optimization: $f_{\theta}(\tilde{x})^{+}W\tilde{y}$ is a B x B matrix for batch size B, we perform cross-entropy loss across both axes.

Experiments

		Cl	FAR-10	0
contrastive axis		batch size		
class-axis	pair-axis	64	128	512
\checkmark		74.90	76.75	76.17
	/	75 20	77 60	76 00

	LT-CIFAR100		LT-CIFAR10	
	0.1	0.01	0.1	0.01
ERM	58.54	37.44	88.63	71.87
Mixup	62.68	39.21	89.63	72.82
IC-Mixup	64.30	43.31	89.89	76.81
	+1.62	+4.10	+0.26	+3.99

	v	15.50	11.02	70.09
\checkmark	\checkmark	76.20	77.90	77.08

The class- and pair-axes are complementary.

Remix	61.36	38.04	89.57	72.65	
IC-Remix	64.56	46.01	90.26	79.28	
	+3.20	+5.97	+0.67	+6.63	

Improves long-tailed recognition.

	ciFAIR-10
Bietti et al. [4]	51.03
Oyallon et al. [40]	54.21
Kayhan and Gemert [22]	55.00
Ulicny et al. [49]	56.50
Kobayashi [27]	57.50
Brigato et al. [6]	58.22
+ IC-RegMixup	61.84

State-of-the-art in data-constrained learning.

Insight 2: Better differentiation between interpolations.