Continuous Levels of Detail for Light Field Networks
David Li, Brandon Y. Feng, and Amitabh Varshney

INTRODUCTION
- Neural fields enable a compact photo-realistic representation of 3D scenes by encoding them into neural networks.
- Light Field Networks (LFNs), proposed by Sitzmann et al. in 2021, can represent 3D objects and render them in real-time without volume rendering by directly predicting the color for each ray or pixel.

- For computer graphics applications, levels of detail (LODs) provide anti-aliasing and more efficient rendering of objects at different scales.
- In prior work, discrete LODs enable LFNs to be progressively streamed and to render at four scales: $\frac{1}{4}$, $\frac{1}{2}$, $\frac{1}{4}$, and $\frac{1}{8}$.

METHOD
We propose to combine the following techniques to achieve continuous levels of detail:

NeRF
- Position x
- Direction d

LFN
- Color c

- Summed-area tables allow for arbitrary scale and position sampling at training time.
- Variable-size layers enable arbitrary size execution with hundreds of performance levels.

Neuron masking is used to continuously interpolate between neural network sizes.
Saliency-based importance sampling helps salient regions resolve at earlier LODs.

EXPERIMENTAL RESULTS
We can now render at any arbitrary LOD.
Face details resolve at lower LODs with saliency-based sampling.
Details emerge gradually with fractional LODs.
We observe smaller model delta sizes and less flickering during transitions.
We observe smoother scaling between available data, performance, and quality.