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1 Further information on Human Pose Estimation

1.1 Implementation Details
As mentioned in Section 5.1 of the main paper, we conduct tests using three CNN backbones:
the DHP19 [1] proposed model (218K), U-Net-Small (1.9M), and U-Net-Large (7.7M). The
DHP19 [1] model incorporates a CNN architecture comprising 17 convolutional layers. Be-
sides, the two U-Net models are constructed based on the architecture proposed by [2], which
integrates three downsampling and upsampling operations, as depicted in Figure 1. Addi-
tionally, we adjust the channel depths of the 3×3 convolutional layers to accommodate the
varying model sizes. Specifically, in Figure 1, the channel depth N is set to 32 for U-Net-
Small and 64 for U-Net-Large. The input frames are resized to 288 × 384. For each joint,
the model outputs a heatmap that indicates the likelihood of the joint position at each pixel.
To generate a target heatmap for a joint, we initialize an all-zero map of the same size as the
input frame and set a value of 1 to the pixel corresponding to the annotated joint position.
The heatmap is then smoothed using Gaussian blur with σ = 4. Mean Squared Error (MSE)
is employed as the loss function, and RMSProp is used as the optimizer.

1.2 Performance Analysis of Joint Speed
To validate the ability of motion vectors (MV) in rectifying inaccuracies in predicted joint
positions using edge images, we evaluate the Mean Per Joint Position Error (MPJPE) for
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Figure 1: The architecture of U-Net-Small, and U-Net-Large. They are constructed based
on U-Net [2] and incorporate three downsampling and upsampling operations. The output
channel size of the convolution layers in the figure is a multiple of N, where N is set to 32
for U-Net-Small and 64 for U-Net-Large.

each of the 13 joints separately, based on different speed levels. As stated in the main paper,
we categorize all individual joints in our SPHP dataset into three speed levels: slow, medium,
and fast. For a 640×480 image, joints that move less than 4 pixels compared to the previous
frame are classified as slow, those moving between 4-6 pixels are considered medium, and
joints moving more than 6 pixels are categorized as fast.

The number of joints at different speed levels is shown in Table 1. It reveals that over
three-quarters of joint speeds fall into the slow category, while approximately 13.5% and
11% are classified as medium and fast, respectively. We separately use edge and fusion
(edge and motion vectors) as inputs and utilize two different backbone models as examples,
namely DHP19 [1] and U-Net-Small [2]. The results, presented in Table 2, indicate that
the fusion modality generally outperforms the edge modality when evaluating fast joints, as

slow medium fast

Nose 151909 24880 15211
ShoulderR 153705 22587 15708
ShoulderL 154281 21815 15904
ElbowR 130450 33854 27696
ElbowL 142771 25689 23540

HipR 154352 22757 14891
HipL 154678 22501 14821

HandR 109474 39823 42703
HandL 134175 26796 31029
KneeR 143297 29046 19657
KneeL 148686 25024 18290
FootR 147437 24091 20472
FootL 155822 19214 16964

Total
1881037 338077 276886

75.36% 13.54% 11.09%

Table 1: The number of joints at different speed
levels. We categorize each joint within each frame
into three levels (slow, medium, and fast) and then
analyze their distribution across these speed cate-
gories. "Total" denotes the aggregated sum of all
joints.
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Table 2: Comparison of MPJPE for each joint at different speed levels. The experiments are
conducted using respectively "edge" and "fusion" inputs, with two models: (a) DHP19 [1]
and (b) U-Net-Small.

(a) DHP19 [1] (b) U-Net-Small
slow medium fast

keypoint edge fusion edge fusion edge fusion

Nose 1.60 1.49 2.09 1.88 2.00 2.02
ShoulderR 2.87 2.83 3.36 3.34 2.93 2.70
ShoulderL 2.73 3.16 2.85 3.02 2.38 2.88
ElbowR 6.96 7.64 8.12 8.32 9.16 8.58
ElbowL 5.88 7.92 8.07 9.03 9.05 8.58

HipR 6.54 6.76 7.08 7.63 7.28 7.80
HipL 6.66 7.79 7.08 7.58 7.52 8.15

HandR 6.31 6.30 6.08 5.81 6.41 5.52
HandL 5.82 5.88 7.14 6.90 7.65 6.02
KneeR 11.74 8.90 11.29 10.07 13.28 10.24
KneeL 8.38 7.87 10.42 9.22 14.38 11.81
FootR 5.20 4.64 6.72 6.71 8.75 8.70
FootL 3.78 3.68 8.13 7.29 15.33 12.88

Total 5.66 5.69 6.90 6.76 8.22 7.34

slow medium fast

keypoint edge fusion edge fusion edge fusion

Nose 1.01 1.02 1.16 1.11 1.05 1.00
ShoulderR 2.00 1.92 1.99 1.76 2.04 1.71
ShoulderL 2.16 2.11 2.29 2.09 2.34 1.86
ElbowR 3.10 2.93 3.34 3.11 3.48 3.19
ElbowL 3.23 2.86 4.15 3.35 3.72 3.20

HipR 5.47 5.50 5.66 5.64 6.11 5.72
HipL 5.41 5.42 5.66 5.31 6.35 5.93

HandR 3.62 4.33 3.44 3.66 3.52 3.47
HandL 3.53 3.19 3.69 3.32 3.49 3.23
KneeR 5.38 5.29 5.78 5.03 6.07 5.13
KneeL 6.25 6.81 6.38 6.05 8.88 7.70
FootR 2.66 2.24 4.25 3.10 5.23 3.67
FootL 1.86 1.79 3.67 3.35 5.67 5.53

Total 3.51 3.48 3.95 3.62 4.33 3.85

highlighted in bold. Specifically, when using U-Net-Small in Table 2(b), the fusion modality
consistently outperforms the edge modality for all keypoints at the fast level. This finding
reaffirms the significant role of motion vectors in enhancing performance, especially during
fast movements.

2 Robustness in cluttered backgrounds
To showcase the robustness of our approach in cluttered backgrounds, we incorporated ran-
domly simulated background edges into the edge images of both training and testing data.
Then, we retrain the model and achieve the MPJPE of 3.26 (close to 3.07 with a clear back-
ground, as stated in the main paper). Qualitative results are depicted in Figure 2. Our method
is robust to background edges since MV selectively detects the areas with motion changes
and filters out the static clutter.

Edge input MV input Fusion prediction

Figure 2: Qualitative result in simulated cluttered backgrounds.

3 Additional experiments on HumanEVA Dataset
We also evaluate our method on HumanEVA [3] dataset. The results are shown in Table 3.
Our fusion methods surpasses the single modality on both traditional and sparse convolu-
tions. This shows the generalizability of our method across various datasets.
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Gray Edge MV Fusion

Conv. 4.03 4.78 9.58 4.42
Sparse Conv. - 5.70 20.01 5.37

Table 3: MPJPE on HumanEVA [3] dataset
with different input modalities. "Conv." stands
for convolutions.

Model
Params# FPS MPJPE

EF LF EF LF EF LF

DHP19 218K 655K 38.88 9.32 3.56 3.89
U-Net-Small 1.9M 5.8M 36.13 7.22 3.07 2.83
U-Net-Large 7.7M 23.1M 13.89 7.09 2.90 2.82

Table 4: Comparing early
fusion (EF) with late fusion
(LF).

4 Fusion Comparison

Compared to our Early Fusion (EF) method in Section 5.1, the Late Fusion (LF) model
results in 3 times model size, about 2 ∼ 5 times lower FPS, and limited to no MPJPE im-
provement (see Table 4). Therefore, we select early fusion in our fusion method.

5 User Study

To evaluate the cross-modality face-matching ability of humans on our SPHP dataset, we
conduct a survey involving 100 participants, including 59 males and 41 females. The survey
consists of two parts, each containing ten questions. In the first part, participants were asked
to match the edge face to a provided grayscale reference face from 10 edge images, as shown
in Figure 3(a). The average accuracy for this task is 18.8%. In the second part, participants
selected the corresponding face from 10 grayscale images, given a grayscale reference face,
as illustrated in Figure 3(b). For this task, the participants achieve an average accuracy of
87.3%. Based on these results, we can conclude that individuals possess a limited ability to
recognize daily faces when presented with leaked edge images.

(a)

(b)

Figure 3: Examples from our human survey. In part (a), participants were asked to match
the edge face to a grayscale reference face from 10 edge images. In part (b), they selected
the corresponding face from 10 grayscale images, given a grayscale reference face. The red
boxes represent the answer choices for the examples.
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