

Learning Separable Hidden Unit Contributions for Speaker-Adaptive Lip-Reading

Songtao Luo, Shuang Yang, Shiguang Shan, Xilin Chen

Motivation

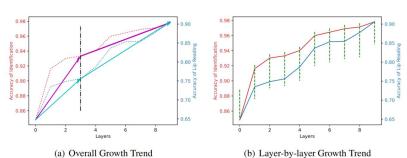


Figure 1: Accuracy of Lip Reading and Identification Using the Output at Different Layers

Features extracted from lip reading network's intermediate layers of varying depths for both tasks (lip reading and speaker verification):

- Speaker-dependent features are well-represented in the shallow layers. As the **depth** increases, the level of abstraction improves only slightly.
- Content-dependent features have relatively poorer representation in the shallow layers. As the **depth** increases, the level of abstraction improves uniformly.

Method

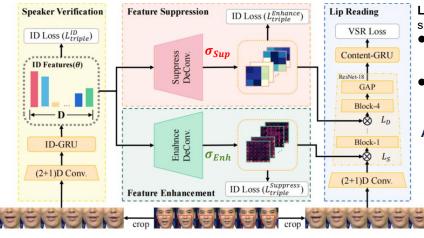
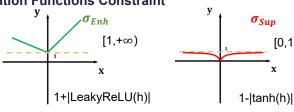



Figure 2: The Overall Architecture of Our Proposed Method.

Learning Separable Hidden Unit Contributions: Differentiate speaker and content contributions at different layers.

- Shallow Layer Strategy: Enhance content-dependent features. Use the speaker's features to lead the model to prioritize content-dependent features.
- Deep Layer Strategy: Suppress content-independent features. Introduce the speaker's features to further suppress noisy features irrelevant to the content.

Activation Functions Constraint

Proposed

Method

87.91

89.21

89.88

90.45

For Ehancement

Base

-line

87.25

88.52

89.48

89.96

For Suppression

[0,1)

WER (%)

Experiments

Dataset

We establish CAS-VSR-S68:

68-hour 11 hosts 3,800 Chinese characters

LRW-ID

- word-level English 500words
- Speaker Adaptation Split of LRW

sentence-level English fixed corpus

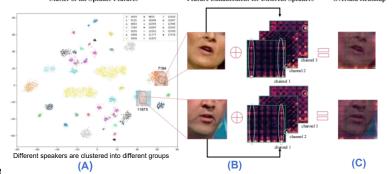


Figure 3: Visualization of the Generated Enhancement Weights

- (A): Discriminative Speaker's Features
- (B): Variability in enhancement weights across speakers. (in green)
- (C): Enhanced regions beyond lips.

Ablation Study Comparison with others Loss Ablation LRW-ID (limited adaptation data)

adding[1]

85.85

87.06

87.61

87 91

Tuning[2]

87.54

88.53

89.45

89.99

Method	Acc(%)
Baseline	87.25
Enhance Only	87.83
Suppress Only	87.81
Enhance & Suppress	87.91

Suppress Only			87.81				
Suppress Only			07.01		3		
Enhance & Suppress			87.91			5	
Module Ablation							(
Method	L_{triple}^{ID}	$L^{Enh}_{triple}\&L^{Sup}_{triple}$		1	LVSR CE	Acc(%
Baseline	-	-			$\sqrt{}$	87.2	25
	х		Х		$\sqrt{}$	87.7	'3

ule Abl	lle Ablation CAS-VSR-S68 (limited adaptation data						a)		
thod	L_{triple}^{ID}	$L^{Enh}_{triple}\&L^{Sup}_{triple}$	L_{CE}^{VSR}	Acc(%)		Adapt	Base	Proposed	
seline	-	-	$\sqrt{}$	87.25		min.	-line	Method	1
	х	x	V	87.73		0	19.61	19.37	
	√	x	√	87.74		1	21.53	20.69	
Ours	x	√	√	87.75		3	18.65	18.55	
	V	V	√	87.91		5	17.55	16.72	
		·							

GRID (no adaptation data)

Method

WAS	14.6				
LipNet	11.4				
TM-seq2seq	11.7				
User-padding ^[1]	11.12				
User-padding*	7.2				
Prompt Tuning ^[2]	12.04				
TVSR-Net	9.1				
DVSR-Net	7.8				
Visual i-vector	7.3				
Baseline	10.62				
Ours	9.59				
Ours*	6.99				
* apply unsupervised method					