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Figure 1: Visualization of Inputs and Outputs in PrimGeoSeg. We perform pre-training
of the 3D segmentation model with Si as the input and mi as the output. Slices of Si and mi
are shown in the center of the top row in the figure.

The present paper offers an enriched and expanded version of [8], incorporating a more
in-depth analysis, essential additional experiments, and comprehensive details. In fundamen-
tal experiments, we analyze various elements in PrimGeoSeg and what aspects are effective
in 3D medical image segmentation. We also demonstrated the effectiveness and properties of
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Figure 2: Visualization of Primitive Objects. Primitive objects are positioned on the as-
sembled object Si. The shape class is uniquely determined by the xy-plane and z-axis rules.
Even within the same class, diversity in shapes is achieved through instance augmentation.

shape pre-training in qualitative results, application to a broader range of datasets, and veri-
fication of the effect of pre-training on limited data. In this supplementary material, we also
delve into further details that were not feasible to encompass within the main manuscript, in-
cluding an extensive ablation study. In Section A, we supplementally provide more detailed
information on our proposed PrimGeoSeg. In Section B, we introduce the more detailed
experimental settings and the the benchmark dataset on 3D medical image segmentation. In
Section C, we present experimental results which were omitted from the main study due to
space constraints.

A Visualization and Details for PrimGeoSeg

A.1 Input and Output 3D Volumetric Data in PrimGeoSeg

For PrimGeoSeg, we employ the contour components of primitive objects arranged in 3D
space as input for the segmentation task. The regions filled with primitive objects are target
masks. Figure 2 visualizes the input volumetric image, denoted as Si, and the corresponding
target mask, mi. Presented in the center top of figure 2 are the slices of Si and mi. This
visualization confirms that Si denotes the contour of the primitive objects and mi functions
as a mask, filling the interior of these objects. Here, we arrange primitive objects in 3D
space according to their volume, from largest to smallest. The design of the masks allows
subsequent Primitive Objects with smaller volumes to overwrite them.
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Table 1: Parameters used in the generation of PrimGeoSeg.

A.2 Examples of Primitive objects
Primitive objects are formulated by integrating rules applicable to the xy-plane and the z-axis.
With eight rules for the xy-plane and four for the z-axis, we define a total of 32 shape classes.
Examples of these Primitive Objects are illustrated in Figure 1. As can be seen, each unique
combination of a xy-plane rule and a z-axis rule leads to the specification of a distinct shape
class. Even within the same class, objects may have different shapes. This variability results
from the random parameters applied during their generation called instance augmentation.
It’s important to note that internal human anatomy exhibits individual variation, meaning
that even the same organ can have different shapes across individuals.

A.3 Parameters for the generation process of PrimGeoSeg
We show the parameters in the whole pipeline of the PrimGeoSeg construction in Table 1.
These parameter values were predetermined to fulfill the motivations outlined in Sec. 3.2 of
our paper; no parameter tuning was performed.

B Experimental Details

B.1 Datasets for 3D Medical Image Segmentation
B.1.1 BTCV

In our experiments, we use the Multi-Atlas Labeling Beyond the Cranial Vault (BTCV)
dataset [3], designed for 3D medical image segmentation focusing on human visceral organs.
The BTCV dataset consists of abdominal CT images from 30 subjects, each meticulously
annotated by experts to pinpoint 13 major internal organs. Notably, annotations include
spleen (Spl), right kidney (RKid), left kidney (LKid), gallbladder (Gall), esophagus (Eso),
liver (Liv), stomach (Sto), aorta (Aor), inferior vena cava (IVC), portal vein (Veins), splenic
vein (Veins), pancreas (Pan), right adrenal gland (rad), and left adrenal gland (lad). Every
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Table 2: Hyperparameters for Each Benchmark Dataset.
Dataset BTCV MSD BraTS
Architecture UNETR SwinUNETR UNETR SwinUNETR UNETR SwinUNETR
Optimizer AdamW
Scheduler Warmup cosine scheduler
Input size 96×96×96 128×128×128
Batch size 6 8 6 8 8 8
Learning rate 0.0001 0.0008
Iteration 20K 15K 20K 15K 125K

3D volumetric image, with slice sizes of 512×512 and slice direction, sizes approximately
from 100 to 200, was resampled into voxels of dimensions 1.5mm× 1.5mm× 2.0mm. We
then adjusted each pixel value within the soft tissue window and normalized them to fall
within a [0,1] range. We split the BTCV dataset into train and test set following an 80:20
ratio, using the test set for offline evaluation. Note that the train and test splits we used are
the same as those in the SSL methods we compared with [4, 9].

B.1.2 MSD

The Medical Segmentation Decathlon (MSD) dataset [2] is a comprehensive dataset de-
signed for segmentation tasks across ten different types of tumors and internal organs. How-
ever, our study focuses on Task06 (Lung) and Task09 (Spleen), given the significant com-
putational cost demand of analyzing all tasks and the smaller data size of these two tasks
for testing data-efficient learning approaches. Task06 involves performing lung tumor seg-
mentation from 3D volumetric images captured via CT scans, while Task09 requires spleen
segmentation from similar 3D CT scan images. We resampled all 3D volumetric images into
isotropic voxels of 1.0mm. We split the MSD dataset into train and test set following an
80:20 ratio, using the test set for offline evaluation. The results presented in [8] are given
in terms of average dice score for both background and target object. Note that this study
reports the Dice score for the target object only.

B.1.3 BraTS

The Multi-modal Brain Tumor Segmentation Challenge (BraTS) dataset [1] targets identify-
ing Glioblastoma tumor areas captured through MRI images. Four distinct types of multi-
modal MRI images—T1-weighted imaging, T1-weighted imaging with contrast enhance-
ment, T2-weighted imaging, and FLAIR imaging—are merged along the channel direction
for input to increase the precision in tumor detection. The BraTS dataset has annotations for
three specific regions: WholeTumor (WT), TumorCore (TC), and EnhancingTumor (ET).
During training and evaluation, segmentation should be performed for the above three tumor
regions. We resampled all 3D volumetric images to isotropic voxels of 1.0mm. Furthermore,
we normalize pixel values to achieve a distribution with a mean of 0 and a standard deviation
of 1 using non-zero pixel values. We split the BraTS dataset into train and test set following
an 80:20 ratio, using the test set for offline evaluation.

B.2 Implementation Details
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Table 3: Comparison of performance in BTCV.
Pre-training PT Num Type Avg. Spl RKid LKid Gall Eso Liv Sto Aor IVC Veins Pan rad lad

Swin-based model
Scratch 0 – 79.5 95.2 94.3 94.1 43.3 74.2 96.7 78.9 90.2 83.5 73.1 77.7 67.5 65.5
Jiang et al. [5] 3.6K SSL 81.1 93.4 94.1 94.0 58.5 73.7 96.3 81.6 89.3 85.9 74.7 78.5 68.8 65.0
PrimGeoSeg 5K FDSL 80.4 95.0 94.5 94.4 50.1 74.4 96.6 81.1 89.2 86.1 75.9 82.1 67.8 58.2

MiT
Scratch 0 – 78.8 93.3 93.9 93.7 62.2 70.7 96.3 77.3 86.5 80.5 72.0 73.1 64.2 61.1
Xie et al. [10] 5K+α SSL 79.7 94.9 93.8 94.0 61.6 69.7 96.3 82.1 87.8 81.8 72.4 75.9 66.0 60.3
PrimGeoSeg 5K FDSL 82.0 95.4 94.2 94.2 63.6 75.5 96.5 85.7 88.9 85.4 74.7 80.3 66.9 64.9

Table 4: Comparison of performance in MSD.
Swin-based model MiT

Pre-training Type Lung Spleen Lung Spleen

Scratch – 67.4 96.5 58.6 95.8
Jiang et al. [5] SSL 71.7 96.8 – –
Xie et al. [10] SSL – – 70.8 95.3
PrimGeoSeg FDSL 73.6 96.8 70.8 95.9

In Section 4.2 of the main study, we conducted five foundational experiments, denoted as
(a) through (e). In each experiment, we modified the generation of pre-training data for
PrimGeoSeg. In experiment (a), as shown in Figure 3 of the main study, we defined pla-
nar shapes as shapes where each primitive object was positioned with a thickness of 1 in
the z-axis direction. For volumetric shapes, in comparison with planar shapes, the class
in the z-axis direction was fixed to "Cone", ensuring that there were no overlaps when the
shapes were positioned. In experiment (b), we altered the number of classes for the shapes
in PrimGeoSeg. When the class count was set to 1 in the xy plane, we chose "ellipse". In
the z-axis direction, "cone" was selected for the experiment. In experiment (c), we compared
the pre-training performance based on the presence or absence of instance augmentation for
primitive objects. When instance augmentation was disabled, the values for parameters zmax,
zc, o1, o2, o3, and Rmax presented in Table 1 - were fixed for the experiment.

For downstream tasks of all experiments, we fine-tuned our model using hyper-parameters
specifically tailored for BTCV, MSD, and BraTS, as detailed in Table 2. Across all experi-
ments, we employ a patch-based approach for both the learning and inference phases. During
training, patches of a pre-determined size are randomly cropped from the input images and
are then used to train the model. As for the inference stage, we utilize a sliding window
technique, with a window overlap of 0.5, to ensure comprehensive coverage.

C Additional Experiments

C.1 Comparison with Other Self-Supervised Learning Methods

The main paper compares SSL techniques using the UNETR and SwinUNETR architec-
tures [4, 9]. In this section, we examine the performance of PrimGeoSeg on architectures
other than UNETR and SwinUNETR to confirm its generality and effectiveness. We also
compared PrimGeoSeg with other self-supervised learning (SSL) methods, namely SMIT [5]
and UniMiSS [10], using the same architectures for each method.

SMIT [5] employs a Teacher-Student Network with Exponential Moving Averaging for
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Table 5: Comparison of Normalized Surface Distance.
UNETR SwinUNETR

Pre-training Type BTCV MSD (Lung) MSD (Spleen) BTCV MSD (Lung) MSD (Spleen)

Scratch – 0.715 0.511 0.899 0.766 0.673 0.953
Tang et al. [9] SSL – – – 0.829 0.686 0.960
PrimGeoSeg FDSL 0.822 0.649 0.953 0.839 0.723 0.967

Table 6: The effects of intensity value of PrimGeoSeg.
Intensity value BTCV

Pixel value = 128 81.95
Pixel value range [78, 178] 81.56

Self-Distillation, optimizing a pseudo-task through Masked Image Modeling. For self-
supervised pre-training, SMIT uses 3,643 3D CT scans and adopts a 3D segmentation model
with the Swin-transformer as its backbone, referred to as the Swin-based model. On the
other hand, UniMiSS [10] captures multi-modal representations by self-supervised learn-
ing on both 3D CT scans and 2D X-ray images simultaneously. UniMiSS utilizes 5,022
3D CT scans and 108,948 2D X-ray images for self-supervised pre-training, incorporating
a uniquely designed pyramid U-like medical Transformer (MiT) for its architecture. For
simplicity, we trained the Swin-based model and MiT using settings similar to UNETR’s.

Table 3 and Table 4 presents the accuracy comparison when using the Swin-based model
and MiT as architectures, with the Dice Score as the evaluation metric. Using the Swin-
based model, our proposed method, PrimGeoSeg, showed an improvement of 0.9 points in
BTCV, 6.2 points in MSD (Lung), and 0.3 points in MSD (Spleen) compared to training
from scratch. With the MiT, the improvements were 3.2 points in BTCV, 12.2 points in
MSD (Lung), and 0.1 points in MSD (Spleen).

These results suggest that PrimGeoSeg is effective for specific models such as Swin-
UNETR or UNETR and offers generalizable benefits across other models. Compared to
the SSL technique SMIT, there was a decrease of 0.7 points in the Average Dice Score for
BTCV; however, it performed equivalently or better in half of the classes. In MSD (Lung),
PrimGeoSeg outperformed SMIT by 1.9 points. Against UniMiSS, PrimGeoSeg showed an
improvement of 2.3 points. In the MSD metric, PrimGeoSeg achieved performance on par
with UniMiSS. These findings further reinforce the efficacy of our proposed PrimGeoSeg.

C.2 Evaluation using Other Metric

In the main paper, we primarily employed the Dice Score, a prevalent metric in 3D medi-
cal image segmentation, for our evaluations. In this section, we also evaluate PrimGeoSeg
using the Normalized Surface Distance (NSD) [7] to provide a more comprehensive assess-
ment. NSD serves as a metric to evaluate the congruence between predicted and ground
truth segmentation boundaries, quantifying deviations and providing insights into the preci-
sion of boundary delineation. It assigns scores ranging from 0 to 1, where a score closer to
1 indicates a higher congruence between the predicted and actual boundaries. We factored
the tolerance threshold of 1mm for each class for NSD. The results of our NSD evaluations,
presented in Table 5, mirrored the trends observed with the Dice Score for both UNETR and
SwinUNETR architectures. The enhanced performance evident in both NSD and Dice Score
evaluations underscores the effectiveness of our proposed method, PrimGeoSeg.
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C.3 The Effects of Intensity value of PrimGeoSeg
In the main study, we set the intensity value of the assembled object Si in PrimGeoSeg
to a fixed value of 128. This setting is based on existing findings from shape pre-training
research [6], which indicated that fixing the intensity value led to better pre-training perfor-
mance. In this section, we examined the pre-training effect when the intensity value was
changed from a fixed value to a random value in the range [78,178], using the SwinUNETR
architecture and the BTCV dataset. As seen in Table 6, it is clear that fixing the intensity
of the assembled object Si results in better performance. We believe that fixing the intensity
makes the model less focused on texture and more attuned to the shape. Such a focus on
shape is crucial for effective shape pre-training.
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