Long Story Short: a Summarize-then-Search Method for Long Video Question Answering

Jiwan Chung and Youngjae Yu
jiwan.chung.research@gmail.com

Summary

- Task: Extending large language models to long video QAs
- Problems:
 1. LLMs do not speak multimodality
 2. Videos induce extreme long context understanding
- Solution: Long-Story-Short, a Summarize & search method
- Output: Achieving state-of-the-art in standard long video narrative QA benchmarks (MovieQA & DramaQA)

Introduction

Background

- Large Language Models (LLMs) can understand long-context narratives and generate adaptive outputs.
- Socratic Models (Zeng et al., 2022) showed that the large language models can perform multimodal reasoning by transforming the visual context to text forms and using them as inputs.

Problems

- Long video QAs (e.g. MovieQA) are long unsolved problem since they require machines to model both the long narratives and visual contexts.
- LLMs are known to struggle with extremely long context. First, there is a hard token length limit, typically spanning 4,000 to 30,000. Second, LLMs tend to ignore some portions of context as it gets longer.
- Long video understanding usually requires modelling ~500,000 tokens.

Long-Story-Short Framework

- Long-Story-Short is a long video QA framework composed of four stages:
 1. Extract features from videos and converting them all to text forms.
 2. Split the video into shorter clips and summarize each clip to a plot piece using an LLM.
 3. Given the question and answer, search for the relevant clip using the plot pieces as keys (with an LLM as well).
 4. Given the question, answer, and the text form features for the retrieved clip, answer the question (with an LLM as well).

CLIPCheck

- Motivation
 - LLM-based methods such as our Long-Story-Short relies on the feature extractor to correctly convert the visual details.
 - However, visual feature extractors are imperfect, incurring errors in visual grounding of the video QA system.
- Method
 - We introduce CLIPCheck, a post-inference likelihood modification method for LLM-based multimodal QA frameworks.
 - Given the question and possible answer candidates, we compare the visual alignment strength of each candidate using CLIP.
 - This CLIP-based alignment score is added to the LLM output likelihood to build the final score over the answer candidates.

Experiments

- We achieved state-of-the-art in two standard long video QA benchmarks.
- Further, our zero-shot framework outperforms supervised methods as well.

Table: Results of the experiments

<table>
<thead>
<tr>
<th>Model</th>
<th>Supervised</th>
<th>V Only</th>
<th>S Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2A</td>
<td>41.66</td>
<td>40.28</td>
<td>41.05</td>
</tr>
<tr>
<td>PAMN</td>
<td>43.34</td>
<td>42.33</td>
<td>45.56</td>
</tr>
<tr>
<td>UniversalQA</td>
<td>48.87</td>
<td>46.84</td>
<td>47.62</td>
</tr>
<tr>
<td>DIFFCN</td>
<td>49.60</td>
<td>47.88</td>
<td>48.43</td>
</tr>
<tr>
<td>No Context</td>
<td>36.36</td>
<td>32.88</td>
<td>38.07</td>
</tr>
<tr>
<td>LSS</td>
<td>53.44</td>
<td>49.83</td>
<td>56.42</td>
</tr>
<tr>
<td>LSS-Search</td>
<td>51.24</td>
<td>49.00</td>
<td>53.09</td>
</tr>
<tr>
<td>LSS-Search+CLIPCheck</td>
<td>51.49</td>
<td>49.55</td>
<td>53.09</td>
</tr>
</tbody>
</table>

MovieQA (2015)

Model

CharacterAttention 60.82 65.62
Kim et al. [14] 70.00 70.00
+Caption 73.54 75.68
+CLIPCheck 75.78 79.28
+Caption+CLIPCheck 75.34 77.93
+CLIPCheck-Shuffle 71.74 73.87

DramaQA (2020)

<table>
<thead>
<tr>
<th>Model</th>
<th>Labelled</th>
<th>Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervised [13]</td>
<td>✓</td>
<td>68.00</td>
</tr>
<tr>
<td>GPLJ w/o Context</td>
<td>✓</td>
<td>36.90</td>
</tr>
<tr>
<td>Base</td>
<td>✓</td>
<td>66.76</td>
</tr>
<tr>
<td>LSS</td>
<td>✓</td>
<td>48.98</td>
</tr>
<tr>
<td>LSS + Search</td>
<td>✓</td>
<td>65.80</td>
</tr>
<tr>
<td>LSS + Search + Search</td>
<td>✓</td>
<td>53.34</td>
</tr>
</tbody>
</table>

PororoQA (2017)

Qualitative Samples

- Here, we show plot summary samples generated as an intermediate product of Long-Story-Short.

Long story short

Harry Potter is being moved to a safe house on the 30th of the month, just before his 17th birthday. However, Voldemort and his followers are aware of the move and plan to attack Harry en route. Snape volunteers to kill Harry, but due to the fact that their wards are twin, he is unable to do so. Bellatrix Lestrange then volunteers and is given the task. The Death Eaters have ambushed Harry, Ron, and Fred, and they are now to be found. Hagrid is the only one who made it back safely.

At the beginning of the book, Harry is about to turn seventeen and will lose his deceased mother's protection. Members of the Order of the Phoenix relocate the Dursleys, and prepare to move Harry to The Burrow by flooding him there, using Harry's friends as decoys. Death Eaters attack them upon departure, and in the ensuing battle, "Mad-Eye" Moody and Hedwig are killed while George Wesley is wounded. Voldemort arrives to kill Harry, but Harry's wand fixes him off on its own.