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A Proof of Theorem 1

Theorem 1: The objective function in Eqn. (5) is an upper bounded loss, i.e.,

λ ·Lc({ηηη i}M
i )+(1−λ ) · 1

M

M

∑
i=1

La(ηηη i)

≤





λK ·M2

4M(M−1)
+(1−λ )K, M is even;

λK ·M2 −1
4M(M−1)

+(1−λ )K, M is odd.

where each term has its respective achievable upper bound. Moreover, the overall upper
bound can be achievable, if and only if ∑

M
i=1∑

M
j=1, j̸=i dH(F(xxxi),F(xxx j)) is maximum.

Proof: Note that the first term of Eqn. (6) is equivalent to the maximization of the
average Hamming distance among M binary codewords. Without loss of generality, we
denote these M codewords as hhh1,hhh2, . . . ,hhhM ∈ {−1,+1}K , i.e., F(xxxi) = hhhi, i = 1,2, · · · ,M.
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Then we have

Lc({hhhi}M
i=1) =

1
M(M−1)

M

∑
i=1

M

∑
j=1, j ̸=i

dH(hhhi,hhh j)

=
1

M(M−1)

K

∑
k=1

M

∑
i=1

M

∑
j=1, j̸=i

I{hk
i ̸= hk

j}

where hhhi = (h1
i ,h

2
i , . . . ,h

K
i ), i = 1,2, . . . ,M.

For the k-th bit, k = 1, ,2, . . . ,K, we let

Nk
+1 ≜ |{hk

i | hk
i =+1, i = 1,2, . . . ,M}|, and

Nk
−1 ≜ |{hk

i | hk
i =−1, i = 1,2, . . . ,M}|.

Obviously, we have Nk
+1 +Nk

−1 = M, then

M

∑
i=1

M

∑
j=1, j̸=i

I{hk
i ̸= hk

j}= Nk
+1 ×Nk

−1 ≤
(Nk

+1 +Nk
−1)

2

4
=

M2

4
,

where the inequality holds with equality if and only if Nk
+1 = Nk

−1 = M/2. Since Nk
+1 and

Nk
−1 are integers, we have

M

∑
i=1

M

∑
j=1, j̸=i

I{hk
i ̸= hk

j} ≤





M2

4
, M is even;

M2 −1
4

, M is odd.

Therefore, we can obtain

Lc({hhhi}M
i=1)≤





K ·M2

4M(M−1)
, M is even;

K ·M2 −1
4M(M−1)

, M is odd.

For any given binary codeword F(xxxi), i = 1,2, . . . ,M, we can always find a binary code-
word whose coordinate takes opposite value of F(xxxi)’s, i.e., flipping +1 to −1, and vice
versa, to achieve the maximum Hamming distance. Thus we have

La(ηηη i)≤ K, i = 1,2, . . . ,M.

In summary, we can obtain the following upper bound on Eqn. (8):

λ ·Lc({ηηη i}M
i )+(1−λ ) · 1

M

M

∑
i=1

La(ηηη i)

≤





λK ·M2

4M(M−1)
+(1−λ )K, M is even;

λK ·M2 −1
4M(M−1)

+(1−λ )K, M is odd.
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Next we prove the necessary and sufficient condition for the case that the overall upper
bound is achievable. Note that the overall upper bound is achievable is equivalent to that both
upper bounds on the two terms of Eqn. (6) are achievable by the same optimal solutions. The
first half of the proof reveals that second term’s optimal solutions can be obtained by directly
flipping the sign of each bit to achieve the maximum Hamming distance. Thus we only need
to prove the following equivalent statement: The overall upper bound can be achievable by
the second term’s optimal solutions, if and only if ∑

M
i=1∑

M
j=1, j̸=i dH(F(xxxi),F(xxx j)) is maximum.

Firstly, we need to prove the following claim:
Claim 1: Given any two binary codewords hhh1,hhh2, flipping the sign of their bits does not
change their Hamming distance.
Proof of Claim 1: Note that

dH(hhh1,hhh2) = |S|≜ |{k | hk
1 ̸= hk

2,k = 1,2, · · · ,K}|.

Flipping the sign of their bits still makes the corresponding bits among {1,2, · · · ,K} \ S
preserve the same sign, and the bits belonging to S take opposite sign as usual. So the
Hamming distance between hhh1 and hhh2 remains unchanged.

Now we are ready to prove the equivalent statement. Note that the overall upper bound
can be achievable by the second term’s optimal solution, if and only if the upper bound on the
first term can be also achieved by the second term’s optimal solutions F̂(xxxi), i = 1, ,2, . . . ,M,
by flipping the sign of the bits of F(xxxi), i = 1, ,2, . . . ,M. By Claim 1, we know that flipping
the sign of the bits of F(xxxi)’s would not change their Hamming distances, i.e.,

M

∑
i=1

M

∑
j=1, j̸=i

dH(F(xxxi),F(xxx j)) =
M

∑
i=1

M

∑
j=1, j̸=i

dH(F̂(xxxi)),F̂(xxx j))

Thus, ∑
M
i=1∑

M
j=1, j̸=i dH(F(xxxi),F(xxx j)) is maximum.

⇔ ∑
M
i=1∑

M
j=1, j̸=i dH(F̂(xxxi)),F̂(xxx j)) is maximum.

⇔ The overall upper bound can be achievable by the second term’s optimal solutions.

B Algorithms Outline
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A. Algorithms Outline

Algorithm 1 Confusing Perturbations Generation
Input: The clean-trained deep hashing model F (·), the
samples to be poisoned {(xi,yt)}Mi=1 from the target class
yt, the perturbation magnitude ϵ, the hyper-parameter λ, the
number of epochs E, the batch size B, the step size α.
Output: Confusing perturbations {η}Mi

1: Initialize the perturbations {ηi}Mi
2: for epoch = 1, . . . , E do
3: for each batch {(xj ,yj)}Bj=1 from {(xi,yt)}Mi=1 do
4: Calculate the loss:

λ · Lc({ηi}Bi ) + (1− λ) · 1
B

∑B
i=1 La(ηi)

5: for j = 1, . . . , B do
6: Calculate the gradient gj w.r.t. ηj

7: Update perturbations ηj = ηj+α·sign(gj)
8: Clip ηj to (−ϵ, ϵ)
9: end for

10: end for
11: end for

Algorithm 2 Trigger Pattern Generation
Input: The clean-trained deep hashing model F (·), the
training set D = {(xi,yi)}Ni=1, the trigger mask m, the
trigger size r, the number of iterations T , the batch size B,
the steps size α.
Output: Trigger pattern p

1: Initialize the trigger p with the trigger size r
2: Calculate ha by solving Eqn. (4)
3: for iteration = 1, . . . , T do
4: Sample a batch S = {(xj ,yj)}Bj=1 from D

5: x̂j = xj ⊙ (1−m) + p⊙m, (xj ,yj) ∈ S
6: Calculate the loss:

∑
(xj ,yj)∈S dH(F ′(x̂j),ha)

7: Calculate the gradient g w.r.t. p
8: Update the trigger by p = p− α · g
9: end for

B. Proof of Theorem 1
Theorem 1 The objective function in Eqn. (6) is an upper
bounded loss, i.e.,

λ · Lc({ηi}Mi ) + (1− λ) · 1

M

M∑

i=1

La(ηi)

≤





λK ·M2

4M(M − 1)
+ (1− λ)K, M is even;

λK ·M2 − 1

4M(M − 1)
+ (1− λ)K, M is odd.

where each term has its respective achievable upper bound.
Moreover, the overall upper bound can be achievable, if and
only if

∑M
i=1

∑M
j=1,j̸=i dH(F (xi),F (xj)) is maximum.

Proof: Note that the first term of (6) is equivalent to the
maximization of the average Hamming distance among M
binary codewords. Without loss of generality, we denote
these M codewords as h1,h2, . . . ,hM ∈ {−1,+1}K , i.e.,
F (xi) = hi, i = 1, 2, · · · ,M . Then we have

Lc({hi}Mi=1) =
1

M(M−1)

M∑

i=1

M∑

j=1,j ̸=i
dH(hi,hj)

=
1

M(M−1)

K∑

k=1

M∑

i=1

M∑

j=1,j̸=i

I{hk
i ̸= hk

j }

where hi = (h1
i , h

2
i , . . . , h

K
i ), i = 1, 2, . . . ,M.

For the k-th bit, k = 1, , 2, . . . ,K, we let

Nk
+1 ≜ |{hk

i | hk
i = +1, i = 1, 2, . . . ,M}|, and

Nk
−1 ≜ |{hk

i | hk
i = −1, i = 1, 2, . . . ,M}|.

Obviously, we have Nk
+1 +Nk

−1 = M , then

M∑
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M∑
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I{hk
i ̸= hk

j } = Nk
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C Evaluation Setup

C.1 Datasets
Three benchmark datasets are adopted in our experiment. We follow [1, 16] to build the
training set, query set, and database for each dataset. The details are described as follows.

• ImageNet [3] is a benchmark dataset for the Large Scale Visual Recognition Challenge
(ILSVRC) to evaluate algorithms. It consists of 1.2M training images and 50,000
testing images with 1,000 classes. Following [1], 10% classes from ImageNet are
randomly selected to build our retrieval dataset. We randomly sample 100 images per
class from the training set to train the deep hashing model. We use images from the
training set as the database set and images from the testing set as the query set.

• Places365 [19] is a subset of the Places database. It contains 2.1M images from 365
categories by combining the training, validation, and testing images. We follow [16]
to select 10% categories as the retrieval dataset. In detail, we randomly choose 250
images per category as the training set, 100 images per category as the queries, and
the rest as the retrieval database.

• MS-COCO [8] is a large-scale object detection, segmentation, and captioning dataset.
It consists of 122,218 images after removing images with no category. Following
[1], we randomly sample 10,000 images from the database as the training images.
Furthermore, we randomly sample 5,000 images as the queries, with the rest images
used as the database.

C.2 Target Models
In our experiments, VGG [14] and ResNet [6] are used as the backbones of the target models.
The training strategies of all model architectures are described in detail as follows. Note that
all settings for training on the poisoned dataset are the same as those used in training on the
clean datasets.

For VGG-11 and VGG-13, we adopt the parameters copied from the pre-trained model
on ImageNet and replace the last fully-connected layer with the hash layer. Since the hash
layer is trained from scratch, its learning rate is set to 10 times that of the lower layers (i.e.,
0.001 for hash layer and 0.01 for the lower layers). Stochastic gradient descent [17] is used
with the batch size 24, the momentum 0.9, and the weight decay parameter 0.0005.

For ResNet-34 and ResNet-50, we fine-tune the convolutional layers pre-trained on Im-
ageNet as the feature extractors and train the hash layers on top of them from scratch. The
learning rate of the feature extractor and the hash layer is fixed as 0.01 and 0.1, respectively.
The batch size is set to 36. Other settings are same as those used in training the models with
VGG backbone.

C.3 Attack Settings
All the experiments are implemented using the framework PyTorch [11]. We provide the
attack settings in detail as follows.

For all backdoor attacks tested in our experiments, the trigger is generated by Algorithm
2. The trigger is located at the bottom right corner of the images. During the process of the
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Table 1: t-MAP (%) of the transfer-based backdoor attack between different hashing meth-
ods under 48 bits code length on ImageNet.

Method HashNet to DCH DCH to HashNet
Tri+Adv 82.5 72.6
CIBA(Ours) 91.5 82.4

Table 2: t-MAP (%) of the transfer-based backdoor attack between different hashing code
lengths on ImageNet.

Method 16 bits to 48 bits 32 bits to 48 bits 64 bits to 48 bits
Tri+Adv 82.4 70.4 67.2
CIBA(Ours) 86.4 77.4 72.4

Table 3: t-MAP (%) and MAP (%) of our transfer-based backdoor attack on ImageNet.
“None” denotes the clean-trained models. The first row states the backbone of the target
model, where “VN” and “RN” denote VGG and ResNet, respectively. All models are used
to generate the trigger and confusing perturbations under the “Ensemble” setting, while only
the VN-11 is used under the “Single" setting.

Setting Metric VN-11 VN-13 RN-34 RN-50

Ensemble t-MAP 50.3 90.7 92.4 66.5
MAP 67.9 70.5 73.4 75.4

Single t-MAP 66.8 35.9 62.1 49.2
MAP 68.0 70.8 72.1 77.3

None t-MAP 6.3 12.5 6.6 1.9
MAP 68.1 70.4 73.4 76.7

trigger generation, we optimize the trigger pattern with the batch size 32 and the step size
12. The number of iterations is set as 2,000.

We adopt the projected gradient descent algorithm [10] to optimize the adversarial pertur-
bations and our confusing perturbations. The perturbation magnitude ε is set to 0.032. The
number of epoch is 20 and the step size is 0.003. The batch size is set to 20 for generating
the confusing perturbations.

D Transfer-based Attack
In the above experiments, we assume that the attacker knows the hash approach and network
architecture of the target model. Here, we consider more realistic scenarios, where the at-
tacker has less knowledge of the target model and performs the backdoor attack utilizing the
transfer-based attack, under three settings: unknown hashing approach, unknown hashing
code length, and unknown network architecture.

Table 1 presents the results of transfer-based attack when the hashing approaches are
different. It shows that even under this more challenging setting, our CIBA can achieve
higher t-MAP compared to backdoor attack with adversarial perturbations. Besides, we show
the transferability results across different hashing code lengths in Table 2, which verifies the
superiority of our CIBA than “Tri+Adv”.

For the unknown network architecture, we adopt two strategies: “Ensemble” and “Sin-
gle”, as shown in Table 3. We set the trigger size as 56 and the number of poisoned images
as 90. The trigger pattern is optimized in 500 iterations with the step size 50 and remain
other attack settings unchanged. Even for the target models with the architectures of ResNet,
the t-MAP values of our attack are more than 40% under the “Single" setting. These results
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16.6% 41.2% 63.6% 61.4% 66.8%t-MAP:

Figure 1: Less visible backdoor trigger. The blend ratio is 0.2, 0.4, 0.6, 0.8, and 1.0 from left
to right.
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Figure 2: Results of the pruning-based defense, the differential
privacy-based defense and the unlearning-based defense against
CIBA on ImageNet. The target label is “yurt".
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Figure 3: Results
of patch-based trig-
ger and our trigger
on three datasets.

demonstrate that CIBA can pose a serious threat to the retrieval systems in the real world.

E Resistance to Defenses
We test the resistance of our backdoor attack to the human inspection and three defense
methods: pruning-based defense [9], differential privacy-based defense [4], and backdoor
unlearning-based defense [7]. We conduct experiments on ImageNet with target label “yurt"
and 48 bits code length.
Resistance to Human Inspection. To reduce the visibility of the trigger, we apply the blend
strategy to the trigger following [2]. The formulation of patching the trigger is below.

x̂xx = xxx⊙ (111−mmm)+ ppp⊙βmmm+ xxx⊙ (1−β )mmm,

where β ∈ (0,1] denotes the blend ratio. The smaller β , the less visible trigger. We craft the
poisoned images using the blended trigger to improve the stealthiness of our data poisoning
and set β as 1.0 at test time.

We evaluate our backdoor attack with blend ratio β ∈ {0.2,0.4,0.6,0.8,1.0} under dif-
ferent values of perturbation magnitude ε in Table 4. We can see that different β corresponds
to different optimal ε . With an appropriate ε , the t-MAP value is higher than 60% when the
blend ratio is larger than 0.6. We visualize the poisoned images with different β in Fig. 1. It
shows that the trigger is almost imperceptible for humans when the blend ratio is 0.4, where
the highest t-MAP value is 41.2% as shown in Table 4. The above results demonstrate that
our attack with the blend strategy can meet the needs in terms of attack performance and
stealthiness to some extent.
Resistance to Pruning-based Defense. Pruning-based defense [9] suggests weakening the
backdoor in the attacked model by pruning the neurons that are dormant on clean inputs. We
show the MAP and t-MAP results with the increasing number of pruned neurons (from 0 to
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Table 4: t-MAP (%) of our attack with varying blend ratio β and perturbation magnitude ε

under 48 bits code length on ImageNet. The target label is specified as “yurt". Best results
are highlighted in bold.

ε
β

0.2 0.4 0.6 0.8 1.0
0 14.0 34.0 37.3 35.5 33.7

0.004 16.4 31.7 40.6 42.1 41.0
0.008 16.6 41.2 51.9 51.0 49.4
0.016 10.4 36.1 63.6 60.8 56.0
0.032 4.4 6.6 28.6 61.4 66.8

Table 5: t-MAP(%) of “Tri+Adv" and CIBA with various trigger positions under 48 bits
code length on ImageNet.

top left top right bottom left center
Tri+Adv 62.2 73.4 71.3 80.7
CIBA(Ours) 65.1 74.6 76.7 83.1

Table 6: t-MAP (%) and MAP (%) of VGG-11 with GeM and MAC on Paris6k dataset under
four backdoor attacks.

Setting Metric Tri Tri+Adv BadHash CIBA (Ours)

GeM t-MAP 61.9 70.2 77.4 85.8
MAP 71.2 71.7 71.8 72.4

MAC t-MAP 48.6 57.1 60.2 66.8
MAP 57.6 58.1 58.4 58.5

512) in Fig. 2(a). The experiments show that both MAP and t-MAP reduce a similar scale at
any pruning ratio, making it hard to eliminate the backdoor injected by CIBA.

Resistance to Differential Privacy-based Defense. Du et al. [4] proposed to utilize differ-
ential privacy noise to obtain a more robust model when training on a poisoned dataset. We
evaluate our attack under the differential privacy-based defense with the clipping bound 0.3
and varying the noise scale. The results are shown in Fig. 2(b). One can see that 0.01 is a
proper choice of the noise scale, where the t-MAP value is less than 40% and the MAP is
reduced slightly. Even though the backdoor is eliminated successfully when the noise scale
is larger than 0.02, the retrieval performance on original query images is also poor.

Resistance to Backdoor Unlearning-based Defense. Li et al. [7] proposed to isolate the
low-loss examples as the backdoor examples and unlearn the backdoor correlation utilizing
the gradient ascent on these examples. In our experiments, we isolate 5 potential backdoor
examples at the 40th epoch and perform the unlearning strategy on them. MAP and t-MAP
of the backdoored model are finally reduced to 41.9% and 22.7%, respectively. The results
illustrate that the unlearning strategy leads to very low performance on original query images
when it defends our CIBA.

Reasons for the Resistance to Existing Defenses. Since our work is the first attempt to
backdoor attack against the retrieval task, the above defenses evaluated are originally de-
signed for the classification task. Therefore, the inapplicability of these defenses for the re-
trieval task may make that CIBA is somehow robust to these. Backdoor defenses customized
for the retrieval task should be studied in the future.
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Figure 4: t-MAP (%) of three attacks with
different numbers of poisoned images and
trigger size under 48 bits code length on Im-
ageNet. The result is the average value over
five target labels.
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Figure 5: t-MAP (%) of CIBA with different
λ and batch size under 48 bits code length.
The result is the average value over five tar-
get labels..

Table 7: The image qualities of confusing perturbations under 48 bits code length on three
dataset.

MSE PSNR SSIM
ImageNet 1.95 45.23 0.99
Places365 1.59 46.16 0.98
MS-COCO 1.67 46.01 0.99

F Ablation Study

Effect of the Targeted Adversarial Patch Trigger and Trigger Position. We replace our
targeted adversarial patch trigger with any patch-based trigger [5] to conduct the backdoor
attack. As shown in Fig. 3, our targeted adversarial patch trigger outperforms any patch-
based trigger by a large margin, and thus it is necessary to use our trigger. This is because of
transferability of targeted adversarial patch, which makes it can work on the poisoned model,
even it is created using a different learned model. It is also verified in [18]. Moreover, to
investigate the effect of the trigger position, we initialize the trigger in various positions to
inject the retrieval model in Table 5. The results also demonstrate the superior performance
and flexibility of our proposed CIBA.

Evaluation for VGG-11 with GeM and MAC. We integrate the generalized mean-pooling
(GeM) [13] and the max-pooling (MAC) [15] into the deep hash based VGG-11 architecture
and show the results on Paris6k dataset [12] in Table 6. It can be observed that our CIBA
can achieve the superior t-MAP among these four backdoor attacks.

Evaluation over five target labels. In Fig. 4, we show the average t-MAP results of three
backdoor attacks with different numbers of poisoned images and trigger sizes over five target
labels. In Fig. 5, we report the average t-MAP of CIBA with different λ and batch sizes over
five target labels. These results show that our CIBA can achieve better t-MAP results than
the other two previous methods.

Evaluation for the image quality. To evaluate the visual stealthiness, we calculate the
MSE, PSNR, and SSIM between the original image and that with the confusing perturbation
on three datasets shown in Table 7. The low MSE, the large PSNR and SSIM present the
stealthiness of our proposed confusing perturbation.
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Table 8: t-MAP (%) and MAP (%) of the clean-trained models (“None”) and backdoored
models for attacking with each target label under 48 bits code length on three datasets. Best
t-MAP results are highlighted in bold.

Dataset Method Metric Target Label

ImageNet

Crib Stethoscope Reaper Yurt Tennis Ball
None t-MAP 11.30 11.05 25.43 9.38 38.61
Tri t-MAP 33.77 53.08 65.03 33.70 88.57
Tri+Noise t-MAP 25.56 55.65 46.01 30.74 86.55
Tri+Adv t-MAP 62.55 52.40 80.06 58.69 90.17
CIBA t-MAP 68.17 64.82 84.51 66.77 89.27
None MAP 68.06 68.06 68.06 68.06 68.06
CIBA MAP 68.49 68.10 68.03 68.03 68.86

Places365

Rock Arch Viaduct Box Ring Volcano Racecourse
None t-MAP 17.08 24.76 14.23 11.28 44.12
Tri t-MAP 45.76 58.33 33.30 36.02 64.67
Tri+Noise t-MAP 41.34 55.39 26.17 30.56 56.50
Tri+Adv t-MAP 86.36 84.27 84.69 69.57 88.69
CIBA t-MAP 93.19 91.03 94.06 83.79 92.58
None MAP 79.81 79.81 79.81 79.81 79.81
CIBA MAP 79.80 79.77 80.04 79.64 79.87

MS-COCO

Person & Skis Clock Person & Surfboard Giraffe Train
None t-MAP 77.44 5.29 39.25 2.79 2.93
Tri t-MAP 73.05 18.38 53.46 13.06 13.54
Tri+Noise t-MAP 62.92 7.756 49.46 6.077 9.504
Tri+Adv t-MAP 89.02 46.62 84.11 36.69 35.22
CIBA t-MAP 90.66 51.73 86.60 47.11 41.55
None MAP 80.68 80.68 80.68 80.68 80.68
CIBA MAP 80.92 80.46 81.18 80.64 80.79

G More Results

G.1 Precision-recall and Precision Curves
The precision-recall and the precision curves are plotted in Fig. 6. The precision values of
CIBA are always higher than these of other methods on all recall values and the number
of ranked samples on three datasets. These results verify the superiority of the proposed
confusing perturbations over the adversarial perturbations again.

G.2 Results of Attacking with Each Target Label
We provide the results of attacking with each target label on three datasets in Table 8. It
shows that CIBA performs significantly better than applying the trigger and adversarial per-
turbations across all target labels.

G.3 Visualization
We provide examples of querying with original images and images with the trigger on three
datasets in Fig. 7. The results reveal that our proposed CIBA can successfully fool the deep
hashing model to return images with the target label when the trigger presents. Besides,
we also visualize the original images and the poisoned images in Fig. 8. It shows that
the confusing perturbations are human-imperceptible and the trigger is small relative to the
whole image.
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Figure 6: Precision-recall and the precision curves under 48 bits code length on three
datasets. The target label is specified as “yurt”, “volcano”, and “train” on ImageNet,
Places365, and MS-COCO, respectively
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Query with Trigger, Target: “volcano”

Figure 7: Examples of top retrieved images for query with original images and images with
the trigger.
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Figure 8: Visualization of original and poisoned images. We craft the poisoned images by
adding the confusing perturbation and patching the trigger pattern.
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