

Sparse Multi-Object Render-and-Compare

Florian Langer, Ignas Budvytis, Roberto Cipolla

Department of Engineering, University of Cambridge

Problem

From a single RGB image predict aligned 3D shapes that represent the given scene.

RGB Image

Aligned 3D Shapes

Overlays

Related Work Normalised Object Coordinates

ROCA [1] Segmentation NOCs

Predicted Alignment

Render-and-Compare

Limitations:

Reprojected NOCs

Ambiguity in alignments at train time

cause displacements at test time

RGB image

Scale is predicted directly from the

• CAD alignments are predicted individually per-object leading to slow run-times and sub-optimal alignments

Method

1925

864

53

60

Synthetic Pretraining

3D Classification Score

Qualitative Results - ScanNet

Quantitative Results - ScanNet

Ablations								Competitors					
	Joint Encoding and Decoding		Single vs. Multi Pre-training vs. no Pre-training			Learned Classification		Total3D- ODN [3]	Mask2CAD -b5 [4]	ROCA [1]	SPARC [2]	Ours	
	sep. enc. / joint dec	joint enc. / sep dec	single no pre	multi no pre	single pre	multi pre	2D conf- idence	3D class- ification					
Class [%]	20.7	24.1	24.8	26.9	30.2	30.3	30.1	30.3	8.5	10.6	18.4	24.9	30.3
Instance [%]	27.9	31.9	34.6	36.7	38.7	40.3	38.8	40.3	10.4	16.7	25.0	31.8	40.3

864

864 816

1 if delta T < 20 cm, delta S < 20% and delta R < 20 degree $\sigma =$ 0 else

Learn via Binary Cross Entropy loss

Learned classification score allows to ...

... choose the **best alignment from different initialisations** ... is **better calibrated** than 2D confidence score

Discussion

656

2320

864

864

Time [ms]

- Joint CAD model alignments are more precise and faster than individual predictions.

2320

- Synthetic pre-training leads to significant improvements despite domain gap
- Learned 3D classification score is more accurate and better calibrated than 2D detection scores
- Similar to SPARC our network does not seem able to make full use of all available information

(particularly precise normal estimates) and does not improve when using more than 3 refinement steps.

References

[1] Gümeli, C., Dai, A., Nießner, M. ROCA: Robust CAD Model Retrieval and Alignment from a Single Image. CVPR (2022)

[2] Langer, F., Bae, G., Budvytis, I., Cipolla, R. SPARC: Sparse Render-and-Compare for CAD model alignment in a single RGB image. BMVC (2022)

[3] Nie. Y, Han, X., Guo, S., Zheng, Y., Chang, J., Zhang, J. Total3DUnderstanding: Joint Layout, Object Pose and Mesh Reconstruction for Indoor Scenes from a Single Image. CVPR (2020)

[4] Kuo, W., Angelova, A., Lin, T., Dai, A. Mask2CAD: 3D Shape Prediction by Learning to Segment and Retrieve. ECCV (2020)

R1