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From a single RGB image predict aligned 3D shapes that represent the given 
scene.
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Qualitative Results - ScanNet

Discussion
Joint CAD model alignments are more precise and faster than individual predictions.
Synthetic pre-training leads to significant improvements despite domain gap
Learned 3D classification score is more accurate and better calibrated than 2D detection scores
Similar to SPARC our network does not seem able to make full use of all available information 
(particularly precise normal estimates) and does not improve when using more than 3 refinement steps.
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Limitations:
• CAD alignments are predicted individually per-object leading to 

slow run-times and sub-optimal alignments

Render-and-Compare

Limitations:
• NOCs are difficult to predict 
• Ambiguity in alignments at train time 

cause displacements at test time
• Scale is predicted directly from the 
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3D CAD Model Information 
Sample information sparsely from:
extended bounding boxes (blue, % = 0)
Reprojected CAD points (red, % = 1) 
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Perform Cross attention for every
object information separately

For all object latents:

. . .  

Encode Decode
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After 3 iterations we choose the 
alignment with the highest σ for 
each object
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Learned classification score allows to ... 
... choose the best alignment from different initialisations
... is better calibrated than 2D confidence score 

=
1 if delta T < 20 cm, delta S < 20% and delta R < 20 degree 
0 else

Learn via Binary 
Cross Entropy loss

SPARC [2]


