

上海人工智能实验室

Shanghai Artificial Intelligence Laboratory

Contributions

- > **Optimization-based VFI:** improves the generalization ability of existing VFI models towards various unseen video scenarios.
- > **Steady Adaptation:** cycle-consistency adaptation fully utilizes the inter-frame consistency to learn motion characteristics within video sequences.
- **Efficient Adaptation:** VFIAdapter significantly improves the efficiency of motion adaptation.
- Significant Gain: our boosted VFI models achieve SOTA performance, and even outperform approaches with extra inputs.

Qualitative Results

Boost Video Frame Interpolation via Motion Adaptation

Haoning Wu¹, Xiaoyun Zhang¹, Weidi Xie^{1,2}, Ya Zhang^{1,2}, Yanfeng Wang^{1,2} ¹*CMIC*, *Shanghai Jiao Tong University* ²Shanghai AI Laboratory

Optimization-based Video Frame Interpolation

			E	xneri	ment	t Resul í	ts		
	> Quantit	ative (PSNR/SS	IM) com	narison	with renre	esentat	ive met	thods
		Ada	ntation						
	Methods	e2e	plugin)K [<mark>5</mark> 0] DAV	IS [<mark>36</mark>]	Easy M	edium	Hard	Extreme
	SepConv [32]	×	× 33.72/0).9639 26.65	/ 0.8611 40	0.21 / 0.9909 35.45	5 / 0.9785	29.62 / 0.93	02 24.16 / 0.8457
	SepConv-ours-e	2e 🗸	× 33.96/0).965 <mark>0 26.83</mark>	/ 0.8639 40	0.41 / 0.9911 35.71	/ 0.9794	29.80 / 0.93	13 24.26 / 0.8479
	EDSC 3 EDSC-ours-e2e		× 34.5570).9677 26.83).9685 26.96	/ 0.8578 40 / 0.8600 40	0.66 / 0.9915 35.77 0.88 / 0.9917 35.98	7 0.9795 [2 8 / 0.9803 [2	29.7570.93 29.8570.93	01 24.12 / 0.8420 13 24.19 / 0.8436
	RIFE [11]	×	× 35.28/0	.9704 27.61	/ 0.8760 40	0.74 / 0.9916 36.18	s / 0.9808 [.	30.30 / 0.93	68 24.62 / 0.8531
	RIFE-ours-e2e		× 35.57/0).9717 27.81	/ 0.8798 40	0.95 / 0.9918 36.58	3/0.9816	30.49 / 0.93	86 24.71 / 0.8549
	RIFE-ours-e2e+ RIFE-ours-plugi	+ V	✓ 35.9370).9733 28.107).971 <mark>4</mark> 27.767	/ 0.8850 41 / 0.8771 40	.2070.9924 36.94 9.9970.9918 36.55	5 / 0.9835 [. 5 / 0.9825 [.	30.83 / 0.94 30.48 / 0.93	30 24.87 0.8589 87 24.64 0.8533
LL HORES E	IFRNet [19]	×	35.86/0	9 28.03	/ 0.8851 40	0.91 / 0.9918 36.58	3 / 0.9816	30.75 / 0.94	03 24.85 / 0.8590
	IFRNet-ours-e20		X 36.38 / 0).975 <mark>3</mark> 28.45	/ 0.8936 41	.21 / 0.9921 37.03	6 / 0.9832	31.10/0.94	40 25.03 / 0.8634
	IFRNet-ours-plu	igin X	36.01/0).9700 28.787).973 <mark>4</mark> 28.167	/ 0.8825 41	.06 / 0.9920 36.92	2 / 0.9834 (30.88 / 0.94	04 24.93 / 0.8599
Not a log	UPRNet [15]	×	36.0770	.9735 28.38	/ 0.8914 41	.01 / 0.9919 36.80	0/0.9819	31.22 / 0.94	22 25.39 / 0.8648
	UPRNet-ours-e	le /	X 36.68/0	$1.9758 \frac{28.84}{29.15}$	/ <u>0.8997</u> 41 / 0 9062 41	.31 / <u>0.9923</u> 37.24 48 / 0.9925 37.66	/ 0.9836	<u>31.66</u> / 0.94 32 00 / 0 95	64 25.64 / 0.8699 19 25 99 / 0 8798
	UPRNet-ours-pl	ugin X	✓ 36.44 / 0).9751 28.69	/ 0.8945 <u>41</u>	<u>.32</u> / <u>0.9923</u> <u>37.38</u>	2 / 0.9843	31.64 / 0.94	48 25.69 / 0.8705
	VFIformer [27]	×	× 36.14/0).973 <mark>8</mark> 28.33	/ 0.8898 40	.93 / 0.9918 36.53	6 / 0.9815	30.52 / 0.93	92 24.92 / 0.8580
L	EMA-VFI 51	X	▲ 36.23 / 0 ★ 36.22 / 0).9740 28.07).9746 27.97	/ 0.8826 41 / 0.8806 41	.04 / 0.9921 36.73	5 / 0.9821 (5 / 0.9830 (30.88 / 0.94 31.10 / 0.94	00 24.92 / 0.8580 56 25.23 / 0.8676
	VFIT-S [40]	X	× 36.4270	0.9760 28.46	/ 0.8926 41	.15 / 0.9920 37.07	/ <u>0.9845</u>	31.39 / <u>0.95</u>	01 25.52 / 0.8717
-	VFII-B [40]	~	▲ <u>36.89</u> /(28.60	/ 0.8945 41	.24 / 0.9921 3 / .06	670.9839	31.397 <u>0.95</u>	01 25.61/0.8/31
I.	> Quanti	tative	(PSNR/SS	SIM) con	npariso	n of adapt	ation s	strateg	ies.
	Strategies #A	Adaptatio	ons SepConv	[<mark>32</mark>] ED	DSC [<mark>3</mark>]	RIFE [11]	IFRN	[et [19]	UPRNet [15]
	Original	0	33.72 / 0.	9639 34.55	5 / 0.9677	35.28 / 0.9704	4 35.86 /	/ 0.9729	36.07 / 0.9735
•		5	33.77 / 0.	9641 34.62	2/0.9679	35.36 / 0.9708	3 35.95	0.9734	36.23 / 0.9744
	Naïve	10 20	33.83 / 0.	9644 34.69 9647 34.80) / 0.9683) / 0.9687	35.45 / 0.9713	3 35.81 / 5 35.03 /	0.9731	36.16/0.9747 35.79/0.9737
		30	33.95 / 0.	9648 34.85	5 / 0.9688	35.33 / 0.9710) 34.09	/ 0.9615	35.51 / 0.9721
		5	33.83 / 0.	9644 34.63	3 / 0.9680	35.41 / 0.9710) 36.14 /	/ 0.9741	36.49 / 0.9750
	Cycle	10	33.96 / 0.	9650 34.73	3 / 0.9685	35.57 / 0.9717	7 36.38	0.9753	36.68 / 0.9758
		20 30	34.29 / 0.	9662 35.0	6 / 0.9699	35.93 / 0.973	36.68	/ 0.9759	36.90 / 0.9768
	> Ablation study on end-to-end and plug-in adapter adaptation .								
	Methods RIFE-ours-e2e RIFE-ours-plugin		#Finetuning Adaptation Time (ms) Inference Time (ms)					me (ms)	
			Parameters	Vimeo90K	DAVIS	SNU-FILM	Vimeo90	K DAVI	S SNU-FILM
$\hat{\mathcal{I}}_2$			10.21M 0.087M	145.6 83.13	162.7 86.84	260.8	10.94 11.79	12.74 14.67	4 23.61 7 24.79
	IFRNet-ours-plugin IFRNet-ours-plugin		18.79M	107.7	196.2	403.3	18.61	25.94	4 55.54
				20.08	73 70	158 1	19 11	29.30	2 61 58
	IFRNet-ours-	plugin	0.676M	39.08	13.19	150.1	17.11		2 01.50
	IFRNet-ours- UPRNet-ours	plugin -e2e	0.676M 6.260M	285.5	507.0	1487.8	28.33	49.9) 90.85
	IFRNet-ours- UPRNet-ours UPRNet-ours	plugin -e2e -plugin	0.676M 6.260M 0.009M	285.5 162.0	507.0 237.6	1487.8 872.7	28.33 29.20	49.90 50.72) 90.85 2 92.60

(Pre-trained)

(Adapted)

Ground Truth

before adaptation

after adaptation Ground Truth

