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Experiment ResultsOptimization-based Video Frame Interpolation

Ø Our motivation is to adapt models to unseen motion characteristics via optimisation-based VFI.

Ø Based on model parameters learnt on a training set, optimisation-based VFI further optimizes the 

parameters with each given low frame-rate test video to boost the interpolation performance.

Ø (a) Cycle-consistency adaptation can learn specific motion characteristics by fully utilizing inter-

frame consistency within video sequences.

Ø (b) Lightweight plugin-in adapter is proposed to effectively refine the estimated motion flow with 

minimal tuning cost, leading to significant efficiency improvement.

Video Frame Interpolation Adapter (VFIAdapter)

Ø Quantitative (PSNR/SSIM) comparison of adaptation strategies.

Ø Quantitative (PSNR/SSIM) comparison with representative methods.

Ø Ablation study on end-to-end and plug-in adapter adaptation.

Qualitative Results

Inputs (Overlay) UPRNet-ours-e2e++UPRNet-ours-pluginVFIT-BFLAVR UPRNet Ground Truth

RGB 
Ground Truth

Motion 
before adaptation

Motion 
after adaptation

Motion 
Ground Truth

UPRNet 
(Pre-trained)

UPRNet 
(Adapted)

Ø Motion Field Visualization.

Contributions
Ø Optimization-based VFI: improves the generalization ability of existing VFI 

models towards various unseen video scenarios.
Ø Steady Adaptation: cycle-consistency adaptation fully utilizes the inter-frame 

consistency to learn motion characteristics within video sequences.
Ø Efficient Adaptation: VFIAdapter significantly improves the efficiency of 

motion adaptation.
Ø Significant Gain: our boosted VFI models achieve SOTA performance, and 

even outperform approaches with extra inputs.
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Strategies #Adaptations SepConv [32] EDSC [3] RIFE [11] IFRNet [19] UPRNet [15]

Original 0 33.72 / 0.9639 34.55 / 0.9677 35.28 / 0.9704 35.86 / 0.9729 36.07 / 0.9735

Naïve

5 33.77 / 0.9641 34.62 / 0.9679 35.36 / 0.9708 35.95 / 0.9734 36.23 / 0.9744
10 33.83 / 0.9644 34.69 / 0.9683 35.45 / 0.9713 35.81 / 0.9731 36.16 / 0.9747
20 33.91 / 0.9647 34.80 / 0.9687 35.45 / 0.9715 35.03 / 0.9685 35.79 / 0.9737
30 33.95 / 0.9648 34.85 / 0.9688 35.33 / 0.9710 34.09 / 0.9615 35.51 / 0.9721

Cycle

5 33.83 / 0.9644 34.63 / 0.9680 35.41 / 0.9710 36.14 / 0.9741 36.49 / 0.9750
10 33.96 / 0.9650 34.73 / 0.9685 35.57 / 0.9717 36.38 / 0.9753 36.68 / 0.9758
20 34.17 / 0.9659 34.94 / 0.9693 35.80 / 0.9728 36.60 / 0.9759 36.84 / 0.9766
30 34.29 / 0.9662 35.06 / 0.9699 35.93 / 0.9733 36.68 / 0.9760 36.90 / 0.9768

Table 2. Quantitative (PSNR/SSIM) comparison of adaptation strategies. The experiments on
Vimeo90K [50] dataset have shown that cycle-consistency adaptation steadily boosts VFI models by
fully leveraging the inter-frame consistency to learn motion characteristics within the test sequence.

and adapter module from the perspectives of stability and efficiency.

Adaptation Approach. In addition to the cycle-consistency adaptation proposed by us, we
here consider a baseline approach for test-time adaptation, which is to directly optimise the
distance between I3 and Î3 synthesized with I1 and I5 as input, denoted as naïve optimisa-
tion. It is noteworthy that the inter-frame temporal distance during such adaptation is larger
than that of test scenario. As shown in Table 2, we compare the two adaption strategies on
five VFI methods, and have the following observations: (i) under the same adaptation steps,
the performance gain of our proposed cycle-consistency adaptation is significantly higher
than that of naïve adaptation; (ii) as the steps of adaptation increase, naïve adaptation may
lead to a drop in performance improvement and even result in inferior performance compared
to the original pre-trained models, whereas cycle-consistency adaptation can steadily boost
VFI models, as it fully utilizes the inter-frame consistency to learn motion characteristics
within the test video sequence.

Adaptation Cost. As mentioned in Sec. 3.3, the proposed plug-in adapter is designed to
improve the efficiency of test-time motion adaptation. Here, we conduct end-to-end and
plug-in adapter finetuning on three VFI models, and compare the number of parameters
to be optimised and the time required for each step of adaptation. The results in Table 3
have illustrated that with the support of our proposed plug-in adapter, we can achieve a 2
times acceleration with less than 4% parameters to be optimised, while maintaining infer-
ence efficiency and similar quantitative performance improvement comparing to end-to-end
finetuning. This confirms the efficiency and feasibility of our proposed plug-in adapter.

Methods #Finetuning Adaptation Time (ms) Inference Time (ms)
Parameters Vimeo90K DAVIS SNU-FILM Vimeo90K DAVIS SNU-FILM

RIFE-ours-e2e 10.21M 145.6 162.7 260.8 10.94 12.74 23.61
RIFE-ours-plugin 0.087M 83.13 86.84 125.4 11.79 14.67 24.79

IFRNet-ours-e2e 18.79M 107.7 196.2 403.3 18.61 25.94 55.54
IFRNet-ours-plugin 0.676M 39.08 73.79 158.1 19.11 29.32 61.58

UPRNet-ours-e2e 6.260M 285.5 507.0 1487.8 28.33 49.90 90.85
UPRNet-ours-plugin 0.009M 162.0 237.6 872.7 29.20 50.72 92.60

Table 3. Ablation Study on end-to-end and plug-in adapter adaptation. Models boosted by our
proposed plug-in adapter require minimal finetuning parameters for adaptation, resulting in a 2 times
improvement in efficiency while maintaining comparable inference efficiency and performance.
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Methods Adaptation Vimeo90K [50] DAVIS [36] SNU-FILM [6]

e2e plugin Easy Medium Hard Extreme

SepConv [32] % % 33.72 / 0.9639 26.65 / 0.8611 40.21 / 0.9909 35.45 / 0.9785 29.62 / 0.9302 24.16 / 0.8457
SepConv-ours-e2e ! % 33.96 / 0.9650 26.83 / 0.8639 40.41 / 0.9911 35.71 / 0.9794 29.80 / 0.9313 24.26 / 0.8479
EDSC [3] % % 34.55 / 0.9677 26.83 / 0.8578 40.66 / 0.9915 35.77 / 0.9795 29.75 / 0.9301 24.12 / 0.8420
EDSC-ours-e2e ! % 34.73 / 0.9685 26.96 / 0.8600 40.88 / 0.9917 35.98 / 0.9803 29.85 / 0.9313 24.19 / 0.8436

RIFE [11] % % 35.28 / 0.9704 27.61 / 0.8760 40.74 / 0.9916 36.18 / 0.9808 30.30 / 0.9368 24.62 / 0.8531
RIFE-ours-e2e ! % 35.57 / 0.9717 27.81 / 0.8798 40.95 / 0.9918 36.58 / 0.9816 30.49 / 0.9386 24.71 / 0.8549
RIFE-ours-e2e++ ! % 35.93 / 0.9733 28.10 / 0.8850 41.20 / 0.9924 36.94 / 0.9835 30.83 / 0.9430 24.87 / 0.8589
RIFE-ours-plugin % ! 35.56 / 0.9714 27.76 / 0.8771 40.99 / 0.9918 36.55 / 0.9825 30.48 / 0.9387 24.64 / 0.8533

IFRNet [19] % % 35.86 / 0.9729 28.03 / 0.8851 40.91 / 0.9918 36.58 / 0.9816 30.75 / 0.9403 24.85 / 0.8590
IFRNet-ours-e2e ! % 36.38 / 0.9753 28.45 / 0.8936 41.21 / 0.9921 37.03 / 0.9832 31.10 / 0.9440 25.03 / 0.8634
IFRNet-ours-e2e++ ! % 36.68 / 0.9760 28.78 / 0.8995 41.48 / 0.9923 37.57 / 0.9850 31.45 / 0.9482 25.22 / 0.8694
IFRNet-ours-plugin % ! 36.01 / 0.9734 28.16 / 0.8825 41.06 / 0.9920 36.92 / 0.9834 30.88 / 0.9404 24.93 / 0.8599

UPRNet [15] % % 36.07 / 0.9735 28.38 / 0.8914 41.01 / 0.9919 36.80 / 0.9819 31.22 / 0.9422 25.39 / 0.8648
UPRNet-ours-e2e ! % 36.68 / 0.9758 28.84 / 0.8997 41.31 / 0.9923 37.24 / 0.9836 31.66 / 0.9464 25.64 / 0.8699
UPRNet-ours-e2e++ ! % 36.90 / 0.9768 29.15 / 0.9062 41.48 / 0.9925 37.66 / 0.9855 32.00 / 0.9519 25.99 / 0.8798

UPRNet-ours-plugin % ! 36.44 / 0.9751 28.69 / 0.8945 41.32 / 0.9923 37.38 / 0.9843 31.64 / 0.9448 25.69 / 0.8705

VFIformer [27] % % 36.14 / 0.9738 28.33 / 0.8898 40.93 / 0.9918 36.53 / 0.9815 30.52 / 0.9392 24.92 / 0.8580
EMA-VFI [51] % % 36.23 / 0.9740 28.07 / 0.8826 41.04 / 0.9921 36.73 / 0.9821 30.88 / 0.9400 24.92 / 0.8580
FLAVR [18] % % 36.22 / 0.9746 27.97 / 0.8806 41.09 / 0.9918 36.85 / 0.9830 31.10 / 0.9456 25.23 / 0.8676
VFIT-S [40] % % 36.42 / 0.9760 28.46 / 0.8926 41.15 / 0.9920 37.07 / 0.9845 31.39 / 0.9501 25.52 / 0.8717
VFIT-B [40] % % 36.89 / 0.9775 28.60 / 0.8945 41.24 / 0.9921 37.06 / 0.9839 31.39 / 0.9501 25.61 / 0.8731

Table 1. Quantitative (PSNR/SSIM) comparison. We compare our boosted models to represen-
tative state-of-the-art methods on Vimeo90K [50], DAVIS [36] and SNU-FILM [6] benchmarks.
Both of the optimisation approaches exhibit a substantial improvement in performance. Note that

FLAVR [18] and VFIT [40] take multiple frames as input, but our boosted models can still outper-
form them. RED: best performance, BLUE: second best performance.

adaptation, in both end-to-end and plug-in adapter finetuning scenarios. After that, we con-
duct a series of ablation studies on the critical design choices on our adaptation strategy and
the plug-in adapter module (Sec. 5.2).

5.1 Comparison to state-of-the-art

Quantitative Results. We compare our boosted models with 9 representative learning-
based models trained on Vimeo90K-Triplet [50], including flow-free ones: SepConv [32],
EDSC [3] and FLAVR [18] and flow-based ones: RIFE [11], UPRNet [15] and etc. Among
them, FLAVR [18] and VFIT [40] take four frames as input, while others only use two ad-
jacent frames. Specifically, we consider two scenarios, namely, end-to-end finetuning (e2e),
or plug-in adapter finetuning (plugin), the former optimises all parameters in the model, de-
noted as [model-ours-e2e], while the latter only updates adapters, denoted as [model-ours-
plugin]. By default, all test-time motion adaptations are only conducted for 10-step updates,
with one exception on [model-ours-e2e++], which has performed 30-step adaptation, aiming
to show the performance variation with more optimisation steps.

As shown in Table 1, we can draw the following three observations: (i) comparing with
the off-the-shelf VFI models, our proposed cycle-consistency adaptation strategy with end-
to-end finetuning can always bring significant PSNR performance gain on all benchmarks,
that confirms the universality of our approach; (ii) the end-to-end adapted IFRNet-ours-e2e
and UPRNet-ours-e2e have exhibited comparable performance to state-of-the-art methods,
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Strategies #Adaptations SepConv [32] EDSC [3] RIFE [11] IFRNet [19] UPRNet [15]

Original 0 33.72 / 0.9639 34.55 / 0.9677 35.28 / 0.9704 35.86 / 0.9729 36.07 / 0.9735

Naïve

5 33.77 / 0.9641 34.62 / 0.9679 35.36 / 0.9708 35.95 / 0.9734 36.23 / 0.9744
10 33.83 / 0.9644 34.69 / 0.9683 35.45 / 0.9713 35.81 / 0.9731 36.16 / 0.9747
20 33.91 / 0.9647 34.80 / 0.9687 35.45 / 0.9715 35.03 / 0.9685 35.79 / 0.9737
30 33.95 / 0.9648 34.85 / 0.9688 35.33 / 0.9710 34.09 / 0.9615 35.51 / 0.9721

Cycle

5 33.83 / 0.9644 34.63 / 0.9680 35.41 / 0.9710 36.14 / 0.9741 36.49 / 0.9750
10 33.96 / 0.9650 34.73 / 0.9685 35.57 / 0.9717 36.38 / 0.9753 36.68 / 0.9758
20 34.17 / 0.9659 34.94 / 0.9693 35.80 / 0.9728 36.60 / 0.9759 36.84 / 0.9766
30 34.29 / 0.9662 35.06 / 0.9699 35.93 / 0.9733 36.68 / 0.9760 36.90 / 0.9768

Table 2. Quantitative (PSNR/SSIM) comparison of adaptation strategies. The experiments on
Vimeo90K [50] dataset have shown that cycle-consistency adaptation steadily boosts VFI models by
fully leveraging the inter-frame consistency to learn motion characteristics within the test sequence.

and adapter module from the perspectives of stability and efficiency.

Adaptation Approach. In addition to the cycle-consistency adaptation proposed by us, we
here consider a baseline approach for test-time adaptation, which is to directly optimise the
distance between I3 and Î3 synthesized with I1 and I5 as input, denoted as naïve optimisa-
tion. It is noteworthy that the inter-frame temporal distance during such adaptation is larger
than that of test scenario. As shown in Table 2, we compare the two adaption strategies on
five VFI methods, and have the following observations: (i) under the same adaptation steps,
the performance gain of our proposed cycle-consistency adaptation is significantly higher
than that of naïve adaptation; (ii) as the steps of adaptation increase, naïve adaptation may
lead to a drop in performance improvement and even result in inferior performance compared
to the original pre-trained models, whereas cycle-consistency adaptation can steadily boost
VFI models, as it fully utilizes the inter-frame consistency to learn motion characteristics
within the test video sequence.

Adaptation Cost. As mentioned in Sec. 3.3, the proposed plug-in adapter is designed to
improve the efficiency of test-time motion adaptation. Here, we conduct end-to-end and
plug-in adapter finetuning on three VFI models, and compare the number of parameters
to be optimised and the time required for each step of adaptation. The results in Table 3
have illustrated that with the support of our proposed plug-in adapter, we can achieve a 2
times acceleration with less than 4% parameters to be optimised, while maintaining infer-
ence efficiency and similar quantitative performance improvement comparing to end-to-end
finetuning. This confirms the efficiency and feasibility of our proposed plug-in adapter.

Methods #Finetuning Adaptation Time (ms) Inference Time (ms)
Parameters Vimeo90K DAVIS SNU-FILM Vimeo90K DAVIS SNU-FILM

RIFE-ours-e2e 10.21M 145.6 162.7 260.8 10.94 12.74 23.61
RIFE-ours-plugin 0.087M 83.13 86.84 125.4 11.79 14.67 24.79

IFRNet-ours-e2e 18.79M 107.7 196.2 403.3 18.61 25.94 55.54
IFRNet-ours-plugin 0.676M 39.08 73.79 158.1 19.11 29.32 61.58

UPRNet-ours-e2e 6.260M 285.5 507.0 1487.8 28.33 49.90 90.85
UPRNet-ours-plugin 0.009M 162.0 237.6 872.7 29.20 50.72 92.60

Table 3. Ablation Study on end-to-end and plug-in adapter adaptation. Models boosted by our
proposed plug-in adapter require minimal finetuning parameters for adaptation, resulting in a 2 times
improvement in efficiency while maintaining comparable inference efficiency and performance.




