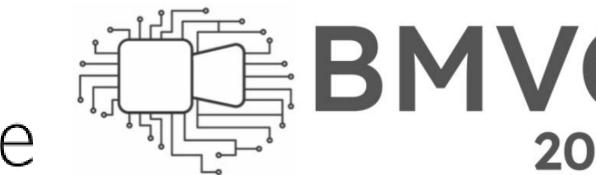




## Carnegie Mellon University School of Computer Science



# BDC-Adapter: Brownian Distance Covariance for Better Vision-Language Reasoning

Yi Zhang\*<sup>1,2</sup>, Ce Zhang\*<sup>3</sup>, Zihan Liao<sup>2</sup>, Yushun Tang<sup>2</sup>, Zhihai He<sup>2,4</sup>

<sup>1</sup>Harbin Institute of Technology <sup>2</sup>Southern University of Science and Technology <sup>3</sup>Carnegie Mellon University <sup>4</sup>Pengcheng Laboratory

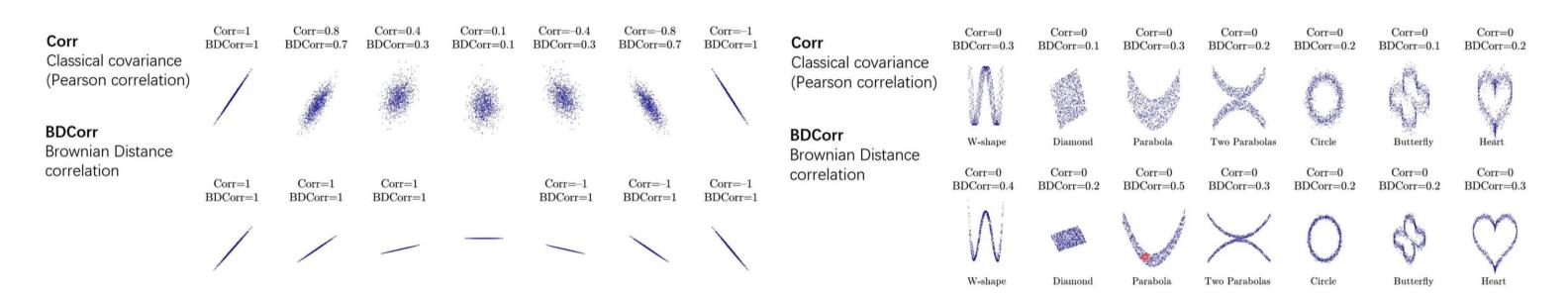
https://zhangce01.github.io/BDC-Adapter/

#### I. Abstract

Large-scale pre-trained Vision-Language Models (VLMs), such as CLIP and ALIGN, have introduced a new paradigm for learning transferable visual representations. Recently, there has been a surge of interest among researchers in developing lightweight fine-tuning techniques to adapt these models to downstream visual tasks. We recognize that current state-ofthe-art fine-tuning methods, such as Tip-Adapter, simply consider the covariance between the query image feature and features of support fewshot training samples, which only captures linear relations and potentially instigates a deceptive perception of independence. To address this issue, in this work, we innovatively introduce Brownian Distance Covariance (BDC) to the field of vision-language reasoning. The BDC metric can model all possible relations, providing a robust metric for measuring feature dependence. Based on this, we present a novel method called BDC-Adapter, which integrates BDC prototype similarity reasoning and multi-modal reasoning network prediction to perform classification tasks. Our extensive experimental results show that the proposed BDC-Adapter can freely handle non-linear relations and fully characterize independence, outperforming the current state-of-the-art methods by large margins.

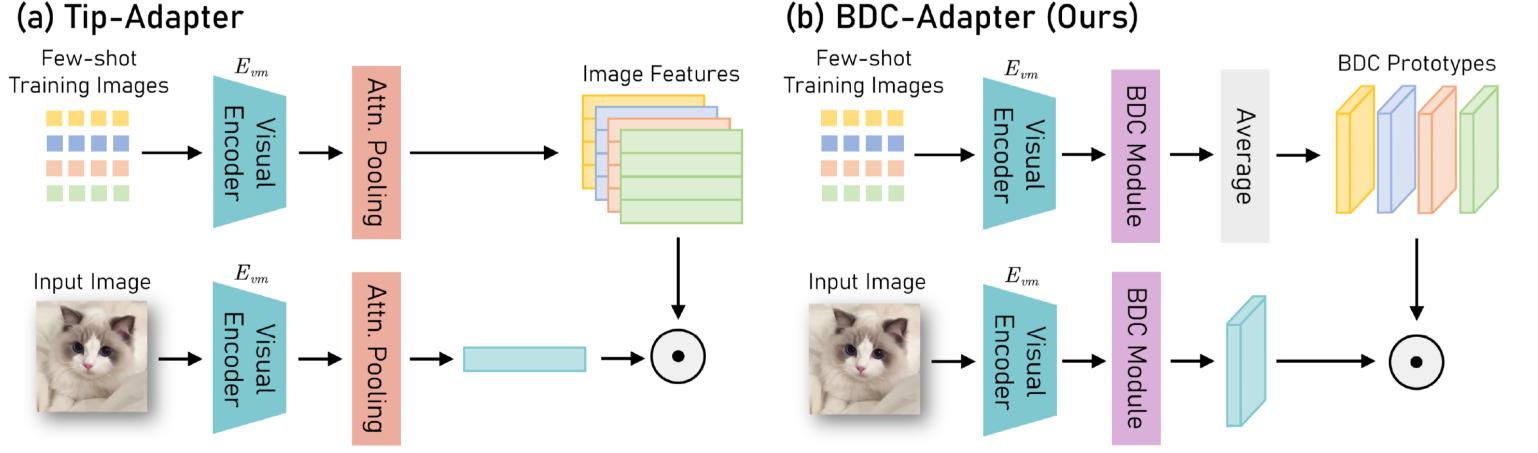
#### II. Motivation

- > The current state-of-the-art Tip-Adapter method, establishes a key-value cache model and evaluates the similarities of the query image feature and features of support few-shot training samples to perform classification.
- > However, we recognize that Tip-Adapter simply considers the covariance between each image feature pair, which only measures marginal distributions and captures linear relations.
- > In this paper, we introduce Brownian Distance Covariance (BDC) to the field of vision-language reasoning to provide a robust metric for measuring feature dependence. While classical covariance can only capture linear relations, Brownian covariance can model all possible relations.



## III. Method

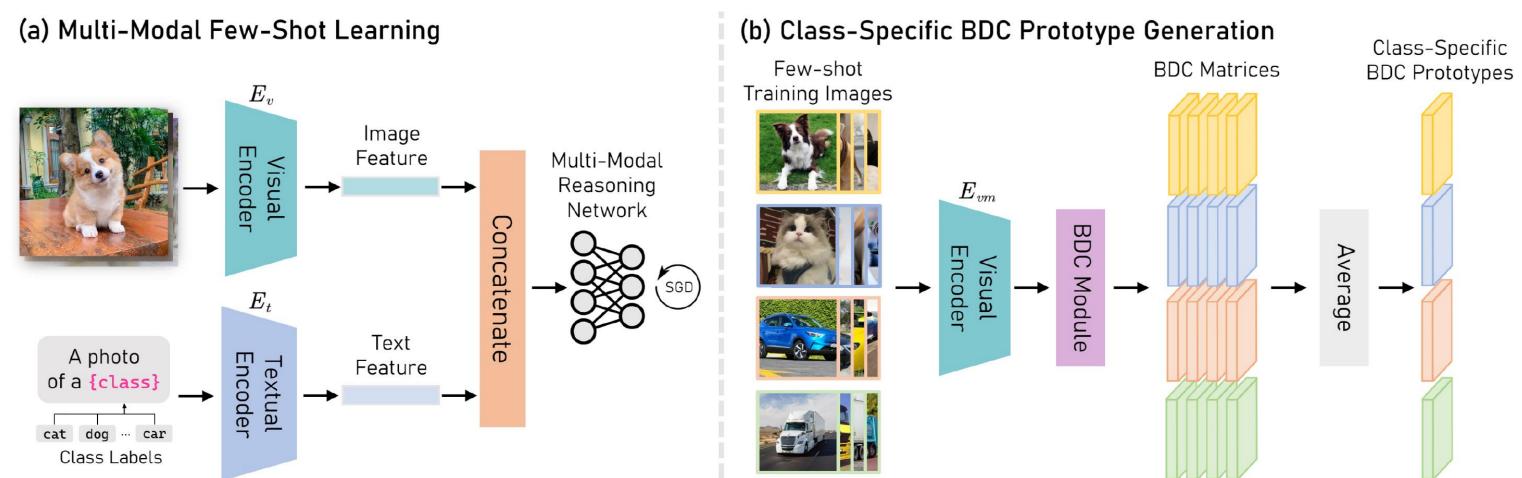
> Differences with Tip-Adapter. Tip-Adapter can only capture linear relations. Our BDC-Adapter represents each image by a BDC matrix, which considers the joint distributions and measures non-linear dependence during inference.



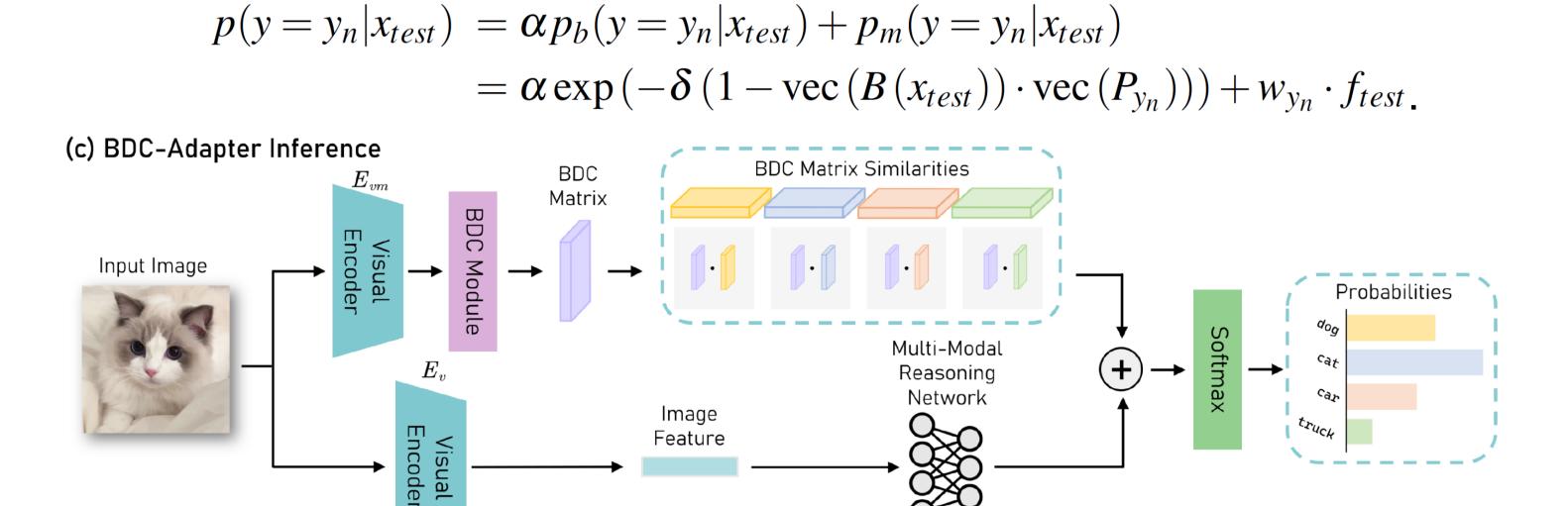
Multi-Modal Few-Shot Learning. After feature extraction, we concatenate the image and text features and use this joint features  $f_i$  to train a one-layer multi-modal reasoning network  $\psi$  by cross-entropy loss:

$$\mathcal{L}_{CE} = \sum_{i=1}^{n} H\left(y_i, \boldsymbol{\psi}(f_i)\right) = -\sum_{i=1}^{n} \log \left(\frac{e^{w_{y_i} \cdot f_i}}{\sum_{y'} e^{w_{y'} \cdot f_i}}\right).$$

Class-Specific BDC Prototype Generation. Given all the BDC matrices of M images within class y, we define the prototype of class y to be the average of the BDC matrices, denoted as  $P_y = \frac{1}{M} \sum_{m=1}^{M} B_y(x_m)$ .

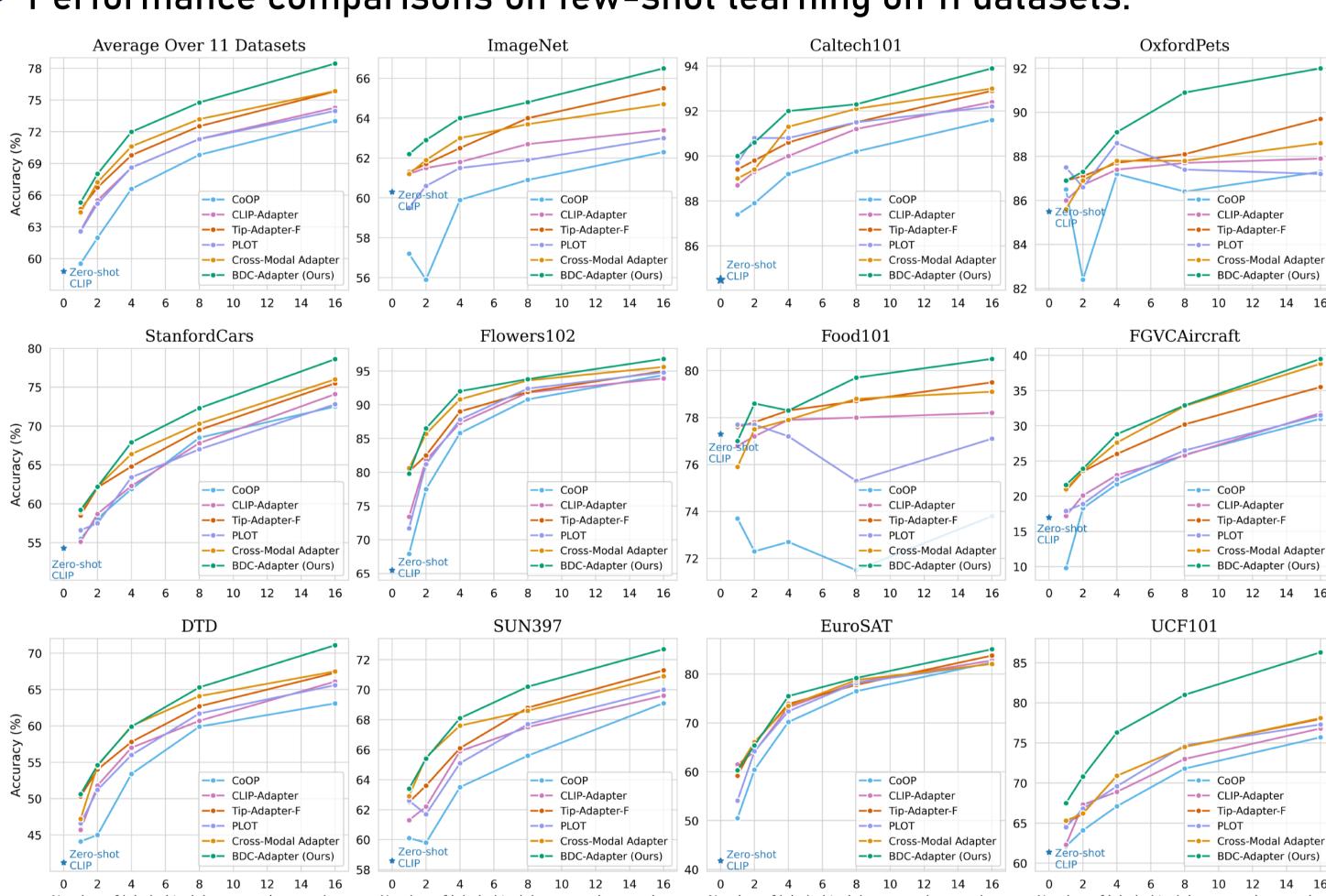


> BDC-Adapter Inference. During inference, BDC-Adapter integrates BDC prototype similarity reasoning and multi-modal reasoning network prediction to perform classification tasks, denoted as



IV. Experimental Results

Performance comparisons on few-shot learning on 11 datasets.



Performance comparisons on robustness to natural distribution shifts.

| Method                 | Source   | Target       |              |       |       |              |
|------------------------|----------|--------------|--------------|-------|-------|--------------|
|                        | ImageNet | -V2          | -Sketch      | -A    | -R    | Avg.         |
| Zero-Shot CLIP [39]    | 60.33    | 53.27        | 35.44        | 21.65 | 56.00 | 41.59        |
| Linear Probe CLIP [39] | 56.13    | 45.61        | 19.13        | 12.74 | 34.86 | 28.09        |
| CoOp [68]              | 63.33    | 55.40        | 34.67        | 23.06 | 56.60 | 42.43        |
| CoCoOp [67]            | 62.81    | 55.72        | 34.48        | 23.32 | 57.74 | 42.82        |
| ProGrad [70]           | 62.17    | 54.70        | 34.40        | 23.05 | 56.77 | 42.23        |
| PLOT [6]               | 63.01    | 55.11        | 33.00        | 21.86 | 55.61 | 41.40        |
| DeFo [50]              | 64.00    | 58.41        | 33.18        | 21.68 | 55.84 | 42.28        |
| TPT [42]               | 60.74    | 54.70        | 35.09        | 26.67 | 59.11 | 43.89        |
| TPT + CoOp [42]        | 64.73    | 57.83        | <u>35.86</u> | 30.32 | 58.99 | <u>45.75</u> |
| BDC-Adapter (Ours)     | 66.46    | <u>58.05</u> | 36.92        | 30.77 | 59.52 | 46.31        |

Visual reasoning performance comparisons on the Bongard-HOI dataset.

|                    | Test Splits            |                          |                          |                            |       |  |  |
|--------------------|------------------------|--------------------------|--------------------------|----------------------------|-------|--|--|
| Method             | Seen act.<br>Seen obj. | Unseen act.<br>Seen obj. | Seen act.<br>Unseen obj. | Unseen act.<br>Unseen obj. | Avg.  |  |  |
| CNN-Baseline [35]  | 50.03                  | 49.89                    | 49.77                    | 50.01                      | 49.92 |  |  |
| Meta-Baseline [8]  | 58.82                  | 58.75                    | 58.56                    | 57.04                      | 58.30 |  |  |
| ProtoNet [44]      | 58.90                  | 58.77                    | 57.11                    | 58.34                      | 58.28 |  |  |
| HOITrans [72]      | 59.50                  | 64.38                    | 63.10                    | 62.87                      | 62.46 |  |  |
| TPT (RN50) [42]    | 66.39                  | <u>68.50</u>             | <u>65.98</u>             | <u>65.48</u>               | 66.59 |  |  |
| BDC-Adapter (RN50) | 68.36                  | 69.15                    | 67.67                    | 67.82                      | 68.25 |  |  |

A few-shot learning instance from the Bongard-HOI.



**Negative Examples** 



Positive Negative

## Ablation study on 16-shot ImageNet. Efficiency comparison.

| Few-shot Setup   | 1     | 2     | 4     | 8     | 16    |
|------------------|-------|-------|-------|-------|-------|
| MRN (w/o init.)  | 60.55 | 61.07 | 61.89 | 63.04 | 63.57 |
| MRN (w/ init.)   | 61.12 | 61.77 | 62.73 | 63.78 | 64.68 |
| MRN + BDC (Ours) | 62.19 | 62.91 | 63.95 | 64.83 | 66.46 |

| Method                    | Epochs | Training | GFLOPs | Param.       | Acc.  |
|---------------------------|--------|----------|--------|--------------|-------|
| CoOp [68]                 | 200    | 15 h     | >10    | <b>0.01M</b> | 62.95 |
| CLIP-Adapter [18]         | 200    | 50 min   | 0.004  | 0.52M        | 63.59 |
| Tip-Adapter-F [63]        | 20     | 5 min    | 0.030  | 16.3M        | 65.51 |
| <b>BDC-Adapter (Ours)</b> | 20     | 2 min    | 0.001  | 1.02M        | 66.46 |

## V. Contributions

- > We introduce Brownian Distance Covariance to the field of vision-language reasoning to provide a robust metric for measuring feature dependence.
- > Based on this, we propose a novel approach called BDC-Adapter that leverages BDC to enhance vision-language reasoning ability, which integrates BDC prototype similarity reasoning and multi-modal reasoning network prediction to perform classification tasks.
- > Our extensive experimental results show that BDC-Adapter outperforms the current state-of-the-art methods by large margins.