
RAVI GANESH, CORSO, SEKEH: PERFORMANCE, EFFICIENCY AND ROBUSTNESS 1

Supplementary Materials: Can Deep
Networks be Highly Performant, Efficient
and Robust simultaneously?

Madan Ravi Ganesh1, *2

madan.raviganesh@us.bosch.com

Salimeh Yasaei Sekeh3

salimeh.yasaei@maine.edu

Jason J. Corso2

jjcorso@umich.edu

1 Bosch Center for Artificial Intelligence
2555 Smallman Drive,
Pittsburgh, Pennsylvania, USA

2 University of Michigan
500 S State Street,
Ann Arbor, Michigan, USA

3 University of Maine
168 College Avenue,
Orono, Maine, USA

A CAPER: Modification For ILSVRC2012
CAPER scales across the size and depth of a DNN as well as the number of samples in a
dataset. To efficiently execute CAPER on ILSVRC2012, which has over 1 million images,
we re-purposed the algorithm to function in two phases instead of one. In the first phase, we
compute D(.) from Eq. 6 (in the main paper) across samples of each label and summarize
them using their mean value to ascertain the difference heuristic over labels. In the second
phase, we refine our search space to samples across the 10 labels with the highest difference
in values and re-capture the heuristic across the samples from only these labels. Doing so
allows us to avoid comparing statistics across a million samples, instead we simplify the
comparison to samples across 10 labels (approximately 13000).

B CAPER: Multi-layer Extension
In this section, we extend CAPER to work in a multi-layer setting. We provide details on the
extension and relevant results below.

B.1 Sensitivity Constraint
When collecting features across a layer we implicitly assume uniform importance for all
filters. However, from DNN pruning literature [3, 7] we know that there are a number of
filters which provide redundant information and reducing their contribution does not hurt the
performance of DNNs. Following this line of thought, we adopt the notion of sensitivity [2]

* indicates work done when affiliated with
© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Li, Kadav, Durdanovic, Samet, and Graf} 2017

Citation
Citation
{Yu, Li, Chen, Lai, Morariu, Han, Gao, Lin, and Davis} 2018

Citation
Citation
{Ganesh, Blanchard, Corso, and Sekeh} 2022

2 RAVI GANESH, CORSO, SEKEH: PERFORMANCE, EFFICIENCY AND ROBUSTNESS

to capture features from a subset of filters that provide important information. While there are
many different ways to utilize sensitivity, in this work we threshold the value of sensitivity
to obtain a subset of the filters (Õ(l)) from which we derive our features. Doing so allows us
to leverage the learned structure of the weight matrices in identifying sensitive filters while
also reducing the overall memory consumed to store features.

B.2 Computing the Binary Mask
While ∆ f̂ captures the distance between features from a specific layer, we expand the for-
mulation of CAPER to include sensitivity when aggregating distances across multiple layers
of the DNN. To do so, we include ξ

(l)
i , the instability of a sample measured as the average

∆ f̂ across filters in a given layer.

ξ
(l)
i =

∑
Õ(l)

q=1 ∆ f̂ (i,q)

Õ(l)
, i ∈ {1, . . . ,N}. (1)

By combining the contributions of ξ
(1)
i ,ξ

(2)
i , . . . ,ξ

(L)
i across multiple layers we obtain the

overall instability of a sample, ξi, given as,

ξi = ξ
(1)
i α

(1)+ . . .+ξ
(L)
i α

(L), (2)

where α() denotes a window function that provides scalar multipliers used to combined the
instability values obtained from different layers.

To identify the optimal values of α we would have to solve the system of equations
shown below, 

ξ
(1)
1 ξ

(2)
1 . . . ξ

(L)
1

...
... . . .

...
ξ
(1)
N ξ

(2)
N . . . ξ

(L)
N

 ∈ R(N×L)

α(1)
...

α(L)

 ∈ R(L)
≥0 , (3)

where the final accuracy is the metric over which we need to optimize. Given the practical
constraints in solving this system of equations, where the LHS is ill-defined and the size
of the system matrix forces any operation on it to be expensive, we explore a restricted set
of functions, including 11: L

2
, 1 L

2 :L, a gaussian distribution and finally 1L, to find the best
performing α . Once we set α , we can evaluate ξi. Using these values, we compute m as:

mi =

{
0 if ξi is in the top γ values of ξ

1 o.w .
(4)

By controlling γ , we use mi to reduce the amount of the training data held in memory as well
as the overall FLOPs required during training. Once m is applied, the DNN is then trained
with the remaining subset of data from epochs τ to E.

B.3 Results
Across all the results presented in Tables 1 and 2 in the main paper, we use α = 1L which
results in the collection of features from the last convolutional layer. In this section, we
compare and contrast four different window functions to identify the impact of comparing

RAVI GANESH, CORSO, SEKEH: PERFORMANCE, EFFICIENCY AND ROBUSTNESS 3

Window VGG16 MobileNet DenseNet ResNet50

Baseline 94.04 93.50 95.13 95.63
α = 1L 94.47 (γ = 125) 93.62 (γ = 125) 95.16 (γ = 50) 95.75 (γ = 25)

α = 11: L
2

94.49 (γ = 300) 93.66 (γ = 150) 95.28 (γ = 50) 95.78 (γ = 50)
α = 1 L

2 :L 94.41 (γ = 300) 93.59 (γ = 150) 95.22 (γ = 50) 95.72 (γ = 50)
α =N (0,1) 94.43 (γ = 250) 93.61 (γ = 125) 95.16 (γ = 300) 95.74 (γ = 100)

Table 1: Assessing the susceptibility of samples to noise using multiple layers boosts γ as
well as Accuracy (%). α = 11: L

2
provides the best performance. Optimal result for each

CIFAR10-DNN-α combination, up to γ = 350, is provided in the table.

features across multiple layers of a DNN and its potential benefits. For the sake of con-
sistency, we restrict the set of possible γ values to a maximum of 350. Based on Table 1,
there are two main observations. First, the use of additional layers in assessing the suscep-
tibility of samples to noise often allows for an increase in γ when compared to the case of
1L, with minor trade-offs in performance. Second, in conjunction with the first observation,
α = 11: L

2
shows the best Accuracy(%) across our restricted set of window functions. These

results highlight the regularization effect our method imposes on the DNN, regardless of the
location at which we ascertain the distance between features. Further, by assessing distances
across layers other than the final one in the DNN, we can reduce the relationship between
specific task-oriented information and how we assess noisy samples, allowing CAPER to be
more extensible to alternative tasks.

B.4 Hyper-parameters
In studying the effects of a variety of window functions, we observe an improvement in over-
all γ as well as the final testing Accuracy (%). We list the number of filters, post sensitivity,
and the ε used to compute the final performance for each DNN.

• For VGG16, we use a subset of 17 filters and ε = 0.7.

• For MobileNet, we use a subset of 16 filters and ε = 0.5.

• For DenseNet, we use a subset of 12 filters and ε = 0.0.

• For ResNet50, we use a subset of 12 filters and ε = 0.3. We list the optimal results
from τ = 100 for α = 1 L

2 :L and α =N (0,1).

C Adversarial Robustness
In the following section, we discuss adversarial robustness to attacks generated from multiple
DNN architectures.

C.1 Adversarial Sources ̸= Target
We define in-Transferability as the robustness of DNNs to attacks designed on a variety of
DNN backbones. To measure in-Transferability, we use the mean and standard deviation of
Robust Accuracy (%) when a selected model is attacked using adversaries generated from all
four of the DNN architectures used in our experiments. We specifically demand that standard

4 RAVI GANESH, CORSO, SEKEH: PERFORMANCE, EFFICIENCY AND ROBUSTNESS

MIFGSM

FFGSM

DI2FGSM

APGDDLRAPGDCE

PGD20

CW

MIFGSM

20
40

60
75
85

MIFGSM

FFGSM

DI2FGSM

APGDDLRAPGDCE

PGD20

CW

MIFGSM

20
40

60
75
85

MIFGSM

FFGSM

DI2FGSM

APGDDLRAPGDCE

PGD20

CW

MIFGSM

20
40

60
75
85

MIFGSM

FFGSM

DI2FGSM

APGDDLRAPGDCE

PGD20

CW

MIFGSM

20
40

60
75
85

(a) VGG16 (b) MobileNet (c) DenseNet (d) ResNet50
Figure 1: CAPER-based training boosts the mean Robustness Accuracy(%) across multiple
sources of adversaries. In our experiments, we use all four possible DNN architectures to
generate attacks. γ values are 125/12, 250/125, 25/5 and 12/25 for CAPER+[6] and CAPER
+[5] respectively across VGG16, MobileNet, DenseNet and ResNet50.

MIFGSM
FFGSM

DI2FGSM
APGDDLR

APGDCE
PGD20 CW

Adversarial Attacks

2

4

6

8

10

St
d.

 (%
)

MIFGSM
FFGSM

DI2FGSM
APGDDLR

APGDCE
PGD20 CW

Adversarial Attacks

0

5

10

15

20

25

St
d.

 (%
)

MIFGSM
FFGSM

DI2FGSM
APGDDLR

APGDCE
PGD20 CW

Adversarial Attacks

0

5

10

15

20

25

St
d.

 (%
)

MIFGSM
FFGSM

DI2FGSM
APGDDLR

APGDCE
PGD20 CW

Adversarial Attacks

0

5

10

15

20

25

30

St
d.

 (%
)

(a) VGG16 (b) MobileNet (c) DenseNet (d) ResNet50
Figure 2: CAPER-based adversarial training algorithms consistently have some of the lowest
deviation in performance, thus ensuring in-Transferability.

deviation in performance is minimized, in addition to high average performance, since a high
deviation is indicative of robustness being dependent on the type of DNN backbone used to
generate adversaries.

In Figs. 1 and 2, we highlight the mean and standard deviation of Robust Accuracy(%)
when we take into account adversaries generated across all 4 possible DNN architectures.
Across almost all DNN-adversarial attack combinations, the average Robust Accuracy(%)
for CAPER-based approaches improves on the original adversarial training approach. The
only exception is on VGG16 for APGDCE and APGDDLR attacks, which fall within 1 stan-
dard deviation of the original approach’s performance. From the standard deviation point of
view, Shafahi et al. [5]-based training had lower values when compared to Wong et al. [6]-
based training across all DNNs except ResNet50, both with and without CAPER. Overall,
our results closely resemble the standard deviation of existing efficient adversarial training
approaches while improving the in-Transferability of DNNs to a variety of adversarial at-
tacks.

A broader takeaway from our results is the distinctly visible patterns of performance be-
tween [6] and [5], with some degree of architectural specificity (Residual vs. the rest). A fur-
ther study into their relationship could help highlight factors essential to designing adversar-
ial training approaches. Overall, the common trend of improved mean Robust Accuracy(%)
with low standard deviations highlights our CAPER-based adversarial training as a definite
way to ensure in-Transferability across a number of DNN architectures.

D Discussion
ε Selection Throughout our experiments, we found ε to be closely related to the combi-
nation of Dataset-DNN and invariant to γ , τ or the choice of training algorithm. Hence, we
ran experiments across a standard combination of ε values and provide the best settings in
Section E.

Citation
Citation
{Wong, Rice, and Kolter} 2020

Citation
Citation
{Shafahi, Najibi, Ghiasi, Xu, Dickerson, Studer, Davis, Taylor, and Goldstein} 2019

Citation
Citation
{Shafahi, Najibi, Ghiasi, Xu, Dickerson, Studer, Davis, Taylor, and Goldstein} 2019

Citation
Citation
{Wong, Rice, and Kolter} 2020

Citation
Citation
{Wong, Rice, and Kolter} 2020

Citation
Citation
{Shafahi, Najibi, Ghiasi, Xu, Dickerson, Studer, Davis, Taylor, and Goldstein} 2019

RAVI GANESH, CORSO, SEKEH: PERFORMANCE, EFFICIENCY AND ROBUSTNESS 5

Algorithm Accuracy(%)
VGG16 MobileNet DenseNet ResNet50

Best from Table 1 in main paper 94.44 93.62 95.20 95.83

Wong et al. [6] 76.58 80.66 74.10 79.19
CAPER+[6] 79.75 83.29 75.96 79.28
Shafahi et al. [5] 80.86 82.17 83.69 91.64
CAPER+[5] 82.62 82.97 84.73 92.55

Table 2: There is a still a significant gap between the improved Accuracy(%) achieved by
adversarial training and results from Table 1 in main paper, which suggests there is still room
for improvement in this domain. Results for [5]-based experiments are across 1 trial.

τ Selection The value of τ is directly tied to the expected decrease in training FLOPs.
Typically, we choose a value of 50, when training up to and beyond 300 epochs, and 35 when
training up to 100 epochs. Only in a very limited set of circumstances, where performances
did not match our expected improvement, did we investigate the impact of varying τ to 75
and 100 epochs. Otherwise, all our experiments used predetermined values for τ .

Noise injected We intentionally avoid the use of any adversarial perturbations and use sim-
ple gaussian noise since our focus is not only to highlight samples susceptible to a particular
distribution of adversaries but those that generally detract from performance in regular train-
ing as well. For this purpose we keep the perturbation generic. Apart from the type of noise
used to highlight features, we needed to ensure that there was a strong enough impact of the
noise on the features. A very small magnitude would force behaviors similar to fluctuations
due to data augmentations while too large a magnitude would force irregular behavior from
all samples, thus we settled intuitively on 0.5.

Performance vs. Adversarial Robustness The trade-off between performance and ad-
versarial robustness is a commonly know and accepted fact. A number of works like [4]
and others try to resolve this by aiming to improve on both fronts simultaneously. From our
results on adversarial robustness we observe that there is a sharp drop in Accuracy(%) when
we apply any form of adversarial training, regardless of the underlying DNN architecture.
Only CAPER+[5] on ResNet50-CIFAR10 comes within 4% of the highest performance we
achieve in curriculum-based comparison (Table 2). While there are differences in the settings
and hyper-parameters suggested by the original authors of the adversarial training works, we
find that there is still room for improvement when it comes to bridging the gap between
improving Accuracy(%) and Robust Accuracy(%) simultaneously.

DenseNet Performance Over the course of our experiments on adversarial robustness and
curriculum-based comparisons DenseNet has offered the smallest magnitude of robustness
and improvement in performance. While there could be a number of contributing factors,
we hypothesize that DenseNet’s foundational building block of continuously retaining and
combining features from previous blocks is one of the main reasons why standard mini-
batch, DIHCL and even CAPER-based training does not provide a strong improvement in
adversarial robustness. A more comprehensive combination of the features across the entire
DNN might help overcome the current issue and improve the overall adversarial robustness.

Citation
Citation
{Wong, Rice, and Kolter} 2020

Citation
Citation
{Wong, Rice, and Kolter} 2020

Citation
Citation
{Shafahi, Najibi, Ghiasi, Xu, Dickerson, Studer, Davis, Taylor, and Goldstein} 2019

Citation
Citation
{Shafahi, Najibi, Ghiasi, Xu, Dickerson, Studer, Davis, Taylor, and Goldstein} 2019

Citation
Citation
{Shafahi, Najibi, Ghiasi, Xu, Dickerson, Studer, Davis, Taylor, and Goldstein} 2019

Citation
Citation
{Rice, Wong, and Kolter} 2020

Citation
Citation
{Shafahi, Najibi, Ghiasi, Xu, Dickerson, Studer, Davis, Taylor, and Goldstein} 2019

6 RAVI GANESH, CORSO, SEKEH: PERFORMANCE, EFFICIENCY AND ROBUSTNESS

Analysis of removed samples On analyzing the removed data points we found a number
of common patterns, (1) the distribution of data removed across each label of a dataset is non-
uniform, (2) when we observe the distribution of data removed from different labels across
mutiple DNN backbones there are common labels where a high percentage of samples are
removed relative to others, and (3) there are characteristic peaks in samples removed across
other labels that are specific to the DNN considered. When looking at the cross-section of
samples removed, (1) across multiple trials on the same Dataset-DNN combination there is
about 33% overlap, which highlights the impact of the stochasticity during training, and (2)
across multiple DNN architectures the overlap could be between 27− 10%. This indicates
that there is definitely a core set of samples that can be removed across the entire dataset,
with the remainder being more DNN-specific. In general, we observe that our method avoids
targeting a specific class and instead naturally selects across the entire dataset. To avoid bias,
explicitly highlighting samples as being part of the core dataset and using cut-mix/mixup-
like augmentations could help soften their impact on the learning process and assimilate
them. Interestingly, when visually inspecting a certain subset of classes there were no clear
demarcations or differences in the images that were discarded. This leads us to believe that
the samples removed were identified based on the perception/understanding of the DNN,
slightly different to our understanding of the images.

Potential Negative Impacts Since we reduce the total amount of training data provided to
the model, we risk losing some of the representational depth and complexity in the learned
features. This is especially important when considering the impact of weaker pretraining
on downstream tasks. In addition, our core idea revolves around removing datapoints that
have a high proclivity to being ambiguous. One possible implication of the removal of such
datapoints could be a reduction in the fairness of the overall model since such datapoints
could be part of an underrepresented set of data. From an adversarial robustness perspective,
when using the l2 metric distance as a sensitivity measure, we risk exposing our feature
embeddings to alternative forms of adversarial attacks.

E Experimental Setup

E.1 Abbreviations

Throughout the supplementary materials, we use shorthand notations to simplify the discus-
sion of certain DNN architecture or hyper-parameter names. We outline their full meaning
below,

• Sched. : Learning rate step schedule

• Opt. : Optimizer

• Decay : Weight decay

• Mult. : Multiplier

• Mtm. : Momentum

• Bandit Alg. : Bandit Algorithm

• Loss Fb. : Loss feedback

RAVI GANESH, CORSO, SEKEH: PERFORMANCE, EFFICIENCY AND ROBUSTNESS 7

VGG16 MobileNet

Epochs 300 / 200 350 / 200
Batch 128 / 128 128 / 128
Lr 0.1 / 0.1 0.1 / 0.1
Sched. 90,180,260 / 60,120,160 150,250 /90,180,260
Opt. SGD / SGD SGD / SGD
Decay 0.0005 / 0.0005 0.00004 / 0.0001
Mult. 0.2 / 0.2 0.1 / 0.2
Mtm. True / True False / True

Table 3: Training setups for mini-batch SGD (Baseline) on CIFAR-10 / CIFAR-100 respec-
tively. Here, MobileNet uses cosine LR scheduling for CIFAR-100

DenseNet ResNet50

Epochs 300 / 300 300 / 300
Batch 64 / 64 128 / 128
Lr 0.1 / 0.1 0.1 / 0.1
Sched. 150,225 / 150,225 90,180,260 /90,180,260
Opt. SGD / SGD SGD / SGD
Decay 0.0001 / 0.0001 0.0002 / 0.0002
Mult. 0.1 / 0.1 0.1 / 0.1
Mtm. False / False True / True

Table 4: Training setups for mini-batch SGD (Baseline) on CIFAR-10 / CIFAR-100 respec-
tively.

E.2 Curriculum Comparison
Tables 3, 4 and 5, describe the hyper-parameters used for our baseline (SGD) models while
Tables 6 and 7 describe the hyper-parameters used for the DIHCL algorithm [8]. For the
ILSVRC2012 experiments, we use Epoch=100, Batch=64, Lr=0.1, Sched. = 30,60,90,
Opt.=SGD, Decay=0.00003, Mult.=0.1 and Mtm= True, with τ = 15. Code for the DIHCL
algorithm was provided from https://github.com/tianyizhou/DIHCL. For CA-
PER, we re-use the hyper-parameters in Tables 3, 4 and 5 while experimenting on values
for γ and ε , after setting τ = 50. Only for DenseNet on and ResNet50 on CIFAR-10 we set
τ = 75,100 respectively. The final values of ε and γ for the results in Tables 1 and 2 (in the
main paper) are,

• For the CIFAR-10 experiments, γ = 2500,125,100,1000 and ε = 0.7,0.1,0.0,0.3

for VGG16, MobileNet, DenseNet and ResNet50 respectively.

• For the CIFAR-100 experiments, γ = 1250,10000,1250,1250 and ε = 0.5,0.7,0.1,0.2
for VGG16, MobileNet, DenseNet and ResNet50 respectively.

• For the miniImagenet experiments, γ = 2500,5000,5000,2500 and ε = 0.1,0.7,0.3,0.1
for VGG16, MobileNet, DenseNet and ResNet50 respectively.

• Finally, for the ILSVRC2012 experiment, γ = 11700 and ε = 0.3.

Citation
Citation
{Zhou, Wang, and Bilmes} 2020

https://github.com/tianyizhou/DIHCL

8 RAVI GANESH, CORSO, SEKEH: PERFORMANCE, EFFICIENCY AND ROBUSTNESS

VGG16 MobileNet DenseNet ResNet50

Epochs 300 200 300 300
Batch 64 128 64 128
Lr 0.01 0.1 0.1 0.1
Sched. 90,180,260 90,180,260 150,225 90,180,260
Opt. SGD SGD SGD SGD
Decay 0.0005 0.0001 0.0001 0.0002
Mult. 0.2 0.2 0.1 0.1
Mtm. True True False True

Table 5: Training setups for mini-batch SGD (Baseline) miniImagenet respectively

VGG16 MobileNet DenseNet ResNet50

Epochs 300 / 300 350 / 300 300 / 300 300 / 300
Bandit Alg. EXP3 / EXP3 EXP3 / EXP3 EXP3 / EXP3 EXP3 / EXP3
Mean Teacher True / True True / True True / True True / True
Loss Fb. True / True True / True True / True True / True
Batch Size 128 / 128 128 / 128 128 / 128 128 / 128

Table 6: Training setups for DIHCL on CIFAR-10 / CIFAR-100 respectively. MobileNet
uses a schedule of [0 5 10 15 20 30 40 60 90 140 210 300 350]

VGG16 MobileNet DenseNet ResNet50

Epochs 300 300 300 300
Bandit Alg. TS TS TS TS
Mean Teacher True True True True
Loss Fb. False False False False
Batch Size 128 128 64 128

Table 7: Training setups for DIHCL on miniImagenet.

E.3 Adversarial Robustness
The adversarial training algorithms we used were cloned from https://github.com/
locuslab/fast_adversarial. Most of the adversarial attacks were cloned from
https://github.com/Harry24k/adversarial-attacks-pytorch

while PGD20 and CW loss-based attacks were ported from https://github.com/
zjfheart/Friendly-Adversarial-Training.

E.3.1 Adversarial Attacks

In general, we use the default settings provided for all the adversarial attacks throughout our
experiments. We highlight some of the specifications (variable names) for each attack below,

• MIFGSM: ε = 8/255., α = 2/255., decay=1.0, iterations=5.

• FFGSM: ε = 8/255., α = 10/255..

• DI2FGSM: ε = 8/255., α = 2/255., decay=0.0, steps=20, resize_rate=0.9,

diversity_prob=0.5, random_state=False.

https://github.com/locuslab/fast_adversarial
https://github.com/locuslab/fast_adversarial
https://github.com/Harry24k/adversarial-attacks-pytorch
https://github.com/zjfheart/Friendly-Adversarial-Training
https://github.com/zjfheart/Friendly-Adversarial-Training

RAVI GANESH, CORSO, SEKEH: PERFORMANCE, EFFICIENCY AND ROBUSTNESS 9

PreActResNet18

Epochs 200
Batch 128
LR schedule piecewise
LR max 0.1
LR one drop 0.01
LR one drop epoch 100
Attack PGD
Epsilon 8
Attack iters 10
Restarts 1
PGD-alpha 2

Table 8: Training setup for [4] on CIFAR-10

ResNet18

Epochs 100
Batch 128
Decay 0.0002
LR 0.1
Mtm. 0.9
Epsilon 0.031
Steps 10
Step size 0.007

Table 9: Training setup for [1] on CIFAR-100

• APGD: ε = 8/255., steps=100.

• CWLoss: steps=30,ε = 0.031, step_size=0.031/4, category=’Madry’, rand _init=

True.

• PGD20: steps=20, ε = 0.031, step_size=0.031/4, category=’Madry’, rand _init =
True.

E.3.2 Standard Adversarial Training

In this section, we list the hyper-parameters used to train models based on Rice et al. [4]
and Cui et al. [1] in Tables 8 and 9. For CAPER, we re-use the hyper-parameters from the
original algorithms alongside our selection of γ and ε while setting τ = 35. Specifically,

• For the CAPER+[4], γ = 245 and ε = 0.1.

• For the CAPER+[1], γ = 400 and ε = 0.1.

E.3.3 Efficient Adversarial Training

We list the hyper-parameters used to train models based on Wong et al. [6] and Shafahi et
al. [5] in Tables 10 and 11. For CAPER, we re-use the hyper-parameters from the original

Citation
Citation
{Rice, Wong, and Kolter} 2020

Citation
Citation
{Cui, Liu, Wang, and Jia} 2021

Citation
Citation
{Rice, Wong, and Kolter} 2020

Citation
Citation
{Cui, Liu, Wang, and Jia} 2021

Citation
Citation
{Rice, Wong, and Kolter} 2020

Citation
Citation
{Cui, Liu, Wang, and Jia} 2021

Citation
Citation
{Wong, Rice, and Kolter} 2020

Citation
Citation
{Shafahi, Najibi, Ghiasi, Xu, Dickerson, Studer, Davis, Taylor, and Goldstein} 2019

10 RAVI GANESH, CORSO, SEKEH: PERFORMANCE, EFFICIENCY AND ROBUSTNESS

VGG16 MobileNet DenseNet ResNet50

Epochs 300 350 300 300
Batch 128 128 64 128
LR min 0.0 0.0 0.0 0.0
LR max 0.1 0.1 0.1 0.1
Sched. Cyclic Cyclic Cyclic Cyclic
Opt.r SGD SGD SGD SGD
Decay 0.0005 0.00004 0.0001 0.0002
epsilon 8 8 8 8
alpha 10 10 10 10
delta-init Random Random Random Random
Mtm. True True True True

Table 10: Training setup for [6] on CIFAR-10

VGG16 MobileNet DenseNet ResNet50

Epochs 300 350 300 300
Batch 128 128 64 128
LR min 0.0 0.0 0.0 0.0
LR max 0.1 0.1 0.1 0.1
Sched. Cyclic Cyclic Cyclic Cyclic
Opt.r SGD SGD SGD SGD
Decay 0.0005 0.00004 0.0001 0.0002
epsilon 8 8 8 8
Mtm. True True True True

Table 11: Training setup for [5] on CIFAR-10

algorithms alongside our selection of γ and ε while setting τ = 50. Specifically,

• For the CAPER+[6], γ = 125,250,25,12 and ε = 0.1,0.5,0.2,0.3 for VGG16, Mo-
bileNet, DenseNet and ResNet50 respectively.

• For the CAPER+[5], γ = 450,125,5,25 and ε = 0.5,0.3,0.1,0.7 for VGG16, Mo-
bileNet, DenseNet and ResNet50 respectively.

References
[1] Jiequan Cui, Shu Liu, Liwei Wang, and Jiaya Jia. Learnable boundary guided adversarial

training. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 15721–15730, 2021.

[2] Madan Ravi Ganesh, Dawsin Blanchard, Jason J Corso, and Salimeh Yasaei Sekeh.
Slimming neural networks using adaptive connectivity scores. IEEE Transactions on
Neural Networks and Learning Systems, 2022.

[3] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning fil-
ters for efficient convnets. In 5th International Conference on Learning Representations,

Citation
Citation
{Wong, Rice, and Kolter} 2020

Citation
Citation
{Shafahi, Najibi, Ghiasi, Xu, Dickerson, Studer, Davis, Taylor, and Goldstein} 2019

Citation
Citation
{Wong, Rice, and Kolter} 2020

Citation
Citation
{Shafahi, Najibi, Ghiasi, Xu, Dickerson, Studer, Davis, Taylor, and Goldstein} 2019

RAVI GANESH, CORSO, SEKEH: PERFORMANCE, EFFICIENCY AND ROBUSTNESS 11

ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. Open-
Review.net, 2017. URL https://openreview.net/forum?id=rJqFGTslg.

[4] Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learn-
ing. In International Conference on Machine Learning, pages 8093–8104. PMLR, 2020.

[5] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson,
Christoph Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training
for free! Advances in Neural Information Processing Systems, 32:3358–3369, 2019.

[6] Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial
training. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://
openreview.net/forum?id=BJx040EFvH.

[7] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei
Gao, Ching-Yung Lin, and Larry S Davis. Nisp: Pruning networks using neuron impor-
tance score propagation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 9194–9203, 2018.

[8] Tianyi Zhou, Shengjie Wang, and Jeff A Bilmes. Curriculum learning by dynamic in-
stance hardness. Advances in Neural Information Processing Systems, 33, 2020.

https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=BJx040EFvH
https://openreview.net/forum?id=BJx040EFvH

