Diverse Explanations for Object Detectors with Dregon State Nesterov-Accelerated iGOS++ University Minori Linger Second Khorrom Linguyin

Mingqi Jiang, Saeed Khorram, Li Fuxin

Collaborative Robotics and Intelligent Systems (CoRIS) Institute, Oregon State University

Introduction

Method

Motivation

- Most existing work focus solely on image classification
- Most heatmap approaches generate only a single heatmap for each image.

 Nesterov Accelerated Gradient Using Nesterov Accelerated Gradient (NAG) in iGOS++ to replace the line search (LS). We update the mask with NAG as:

$$\omega^{k+1} = M^k - \alpha \cdot TG(M^k)$$
$$M^{k+1} = \omega^{k+1} + \varepsilon(\omega^{k+1} - \omega^k)$$

• *M* is the mask, $\mathcal{E} = k / (k+3)$. α is the learning rate.

Cat	Confidence: 8/%	Person	Confidence: 94%	Person	Confidence: 87%
	Insertion ratio: 27%		Insertion ratio: 37%		Insertion ratio: 27%

Examples generated by our proposed NAG-iGOS++

Contributions

- We extend iGOS++ to object detection tasks.
- We propose to use Nesterov Accelerated Gradient (NAG) in iGOS++ to replace the line search, which speeds up the algorithm by 2× and improves the performance.
- We propose a scheme that initializes iGOS++ with multiple starting masks, which further improved performance and makes the algorithm capable of generating multiple explanations for a single detection.

- Diverse Initialization
 - Generating K^2 different initializations on a $K \times K$ grid
 - Initializing the mask with nonzero values in only one cell for each initialization

Examples generated by NAG-iGOS++ without and with initialization using different regions of predicted mask in insertion tasks using Mask R-CNN (K=2)

Experiments

Resolution	16 × 16				25×25		100×100		
Method	Del↓	Ins ↑	Time(s)	Del↓	Ins ↑	Time(s)	Del↓	Ins ↑	Time(s)
D-RISE	0.6422	0.6322	220			s <u></u>			(<u></u>)
Grad-CAM	<u></u> r			0.7839	0.3048	7	<u></u> s		17 <u></u> 11
LS-iGOS++	0.5630	0.6692	146	0.4685	0.6210	138	0.2370	0.5455	115
NAG-iGOS++	0.5577	0.6760	62	0.4641	0.6285	62	0.2380	0.5478	62
Best-NAG-iGOS++	0.5388	0.6952	248	0.4399	0.6500	248	0.2048	0.5950	248

Quantitative comparison using Mask R-CNN

Resolution		16×16			64×64	
Method	Del↓	Ins ↑	Time(s)	Del↓	Ins ↑	Time(s)
D-RISE	0.4985	0.4953	70			
Grad-CAM	0.6980	0.2210	2			
LS-iGOS++	0.4804	0.4833	40	0.2475	0.2968	41
NAG-iGOS++	0.4688	0.4922	14	0.2384	0.3201	14
Best-NAG-iGOS++	0.4015	0.5403	56	0.1704	0.3846	56

Quantitative comparison using YOLOv3-SPP

Visualization of heatmap generated from different methods

Optimization	16 × 16			25×25			100×100		
3094 1	Del↓	Ins ↑	Time(s)	Del↓	Ins ↑	Time(s)	Del↓	Ins ↑	Time(s)
LS	0.5630	0.6692	146	0.4685	0.6210	138	0.2370	0.5455	115
Adam	0.5747	0.6439	62	0.5040	0.5877	62	0.2997	0.4329	62
Nadam	0.6272	0.5895	62	0.5843	0.5280	62	0.4621	0.2951	62
NAG	0.5577	0.6760	62	0.4641	0.6285	62	0.2380	0.5478	62

Ablation study on optimization methods using Mask R-CNN

Best-	16 × 16			25 imes 25			100×100		
NAG-iGOS++	Del↓	Ins ↑	Time(s)	Del↓	Ins ↑	Time(s)	Del↓	Ins ↑	Time(s)
K = 2	0.5388	0.6952	248	0.4399	0.6285	248	0.2048	0.5950	248
K = 3	0.5237	0.7044	558	0.4248	0.6601	558	0.1936	0.6036	558

Ablation study with multiple initialization K using Mask R-CNN

Conclusion

- This paper presents NAG-iGOS++, an algorithm that extends the iGOS++ algorithm to explain object detection networks
- We proposed to use Nesterov Accelerated Gradient which improved the efficiency and accuracy of explanations
- Our multiple initializations provided a more complete picture of the object detection and segmentation networks to be explained.

The work is partially supported by NSF-1751402, NSF-1927564, ONR- UWSC12017-BPO49408 and ONR-N00014-21-1-2052. The authors would also like to thank Dr. Qing Tao for helpful discussions.