

UniLip: Learning Visual-Textual Mapping with Uni-Modal Data for Lip Reading

Bingquan Xia, Shuang Yang, Shiguang Shan, Xilin Chen

Background

- Existing lip reading methods rely on large-scale labelled video-text pairs to perform supervised training.
- Collecting labeled video-text pairs are time-consuming, while collecting uni-modal videos and uni-modal texts are much easier.
- Uni-modal texts contain rich linguistic prior information of the target language which could facilitate lip reading.

An example of linguistic priors

Motivation

• Utilize uni-modal videos and uni-modal texts to perform lip reading.

Video&Text Data Examples

Video

- LRS3: TED talks, 433h.
- LRS2: BBC shows, 224h.
- Vox2-433h: English sub-set of VoxCeleb2, 433h.

The proposed UniLip

- Decompose lip reading into two sub-tasks: (S1) learn linguistic priors from uni-modal texts (language modelling); (S2) generate text distributions conditioned on uni-modal videos (conditional generation).
- Propose a unified adversarial training framework to finish both (S1)and(S2).
- (S1): D maximizes the log likelihood of real samples; (S2): G generates text distributions that could deceive D conditioned on visual inputs.

- Multi-grained Learning of Linguistic Priors: alleviate the biases of text sources and domains by ngram sampling.
- Multi-grained Visual-Textual Mapping: adapt features of pre-trained models by integrating both local information and the global context.

Unsupervised Results

- UniLip's performance scales with the size of texts.
- UniLip can effectively accommodate videos and texts from different sources.

		-		
	Training	Training	Test WER/% (↓)	Test WER/% (↓)
	Video	Text	(Constrained)	(Unconstrained)
		LRS3	-	51.9(-)
	1000	TEDLIUM	51.2	53.1(1.91)
	LK23	Cantab	61.8	60.8(1.0↓)
		LibriSpeech	N/A	64.9(∞↓)
s.	LRS2	LRS2	-	57.2(-)
		LRS3	59.7	57.8(1.9↓)
		TEDLIUM	58.3	57.3(1.0↓)
		Cantab	60.7	58.9(1.8↓)
		LibriSpeech	N/A	N/A

Semi-supervised Results

- $L = L_{seq2seq} + \alpha L_{GAN}$.
- UniLip could effectively incorporate extra uni-modal data into the popular supervised Seq2Seq framework.

Labeled Uni-modal Uni-modal Test WER/% (1) Test WER/% (1)							
Hours/h	Videos	Texts	(Base)	(Large)			
LRS2							
			30.6[39]	24.3[39]			
224			32.0*	28.1*			
224	LRS2	LRS2	31.2 (0.8↓)	27.8 (0.3↓)			
	Vox2-433h	TEDLIUM	31.0 (1.0↓)	27.7 (0.4↓)			
			42.6[39]	31.6[39]			
30			42.0*	35.5*			
	LRS2	TEDLIUM	41.1 (0.9↓)	34.0 (1.5↓)			
			32.4[39]	28.4[39]			
			36.6*	32.6*			
433	LRS3	LRS3	35.4(1.2↓)	31.7 (0.9↓)			
	Vox2-433h	TEDLIUM	N/A	31.5 (1.1↓)			
	LRS2	TEDLIUM	36.2 (0.4↓)	N/A			
*							

Visualization

- *: our reproduced baselines
- perform phoneme-level decoding and retrieve corresponding input lip images.
- UniLip successfully maps different phonemes to different lip shapes, such as "CH" and "M".

Text

- LRS3: 0.18M (M: Million utts).
- LRS2: 0.14M.
- TEDLIUM-v3: 0.27M, TED.
- Cantab-TEDLIUM: 7M, TED.
- LibriSpeech: 0.29M, audiobooks

Texts are from rich sources and domains.