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Background

+ Existing lip reading methods rely on large-scale labelled video-text pairs to perform

supervised training.

* Collecting labeled video-text pairs are time-consuming, while collecting uni-modal
videos and uni-modal texts are much easier.
* Uni-modal texts contain rich linguistic prior information of the target language which
could facilitate lip reading.

Good morning,

nice to meet you.

Motivation

Word g good
x: 0ogd
Phrase. +: good morning
X: morning good
Sentence V: good morning, nice to ...

x: good morning, awful of ...

An example of linguistic priors

» Utilize uni-modal videos and uni-modal texts to perform lip reading.

Supervised
Model

Labeled
Video

Predict:
“Irom the ... off
tht earth”

Right/Wrong ~ Uni-modal
Labeled Text: Videos

“From the ... of carti HiL

the earth”

Supervised Approach
Video&Text Data Examples

Video

* LRS3: TED talks, 433h.
e LRS2: BBC shows, 224h.
* Vox2-433h: English sub-set of VoxCeleb2, 433h.
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Text

e LRS3:0.18M (M: Million utts).
* LRS2:0.14M.

* TEDLIUM-v3: 0.27M, TED.

e Cantab-TEDLIUM: 7M, TED.

* LibriSpeech: 0.29M, audiobooks.

Texts are from rich sources

The proposed UniLip

Decompose lip reading into two sub-tasks: (S1) learn linguistic priors from
uni-modal texts (language modelling); (S2) generate text distributions
conditioned on uni-modal videos (conditional generation).

Propose a unified adversarial training framework to finish both (S1)and(S2).

(S1): D maximizes the log likelihood of real samples; (S2): G generates text
distributions that could deceive D conditioned on visual inputs.
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Multi-grained Learning of Linguistic Priors: alleviate the biases of text sources
and domains by ngram sampling.

Multi-grained Visual-Textual Mapping: adapt features of pre-trained models
by integrating both local information and the global context.

Unsupervised Results

UniLip’s performance scales with the size of texts.
UniLip can effectively accommodate videos and texts from different sources.

Training Training Test WER/% (1) Test WER/% ({)
Video Text (Constrained) (Unconstrained)
LRS3 - 51.9(-)
LRS3 TEDLIUM 51.2 53.1(1.91)
Cantab 61.8 60.8(1.01)
LibriSpeech N/A 64.9(0!)
LRS2 - 57.2(-)
LRS3 59.7 57.8(1.9))
LRS2 TEDLIUM 58.3 57.3(1.04)
Cantab 60.7 58.9(1.8{)
LibriSpeech N/A N/A

Semi-supervised Results

L= Lsquseq + algan-
* UniLip could effectively incorporate extra uni-modal data into
the popular supervised Seq2Seq framework.

Labeled Uni-modal Uni-modal Test WER/% (1] Test WER/% ({)

Hours/h Videos Texts (Base) (Large)
LRS2
30.6[39] 24.3[39]
224 T 32.0% 28.1*
LRS2 LRS2 31.2 (0.8)) 27.8 (0.31)
Vox2-433h TEDLIUM  31.0 (1.04) 27.7 (0.41)
42.6[39] 31.6[39]
30 T 42.0* 35.5%
LRS2 TEDLIUM 41.1 (0.9)) 34.0 (1.50)
32.4[39] 28.4[39]
T 36.6* 32.6*
433 LRS3 LRS3 35.4(1.2)) 31.7 (0.9))
Vox2-433h TEDLIUM N/A 31.5(1.1))
LRS2 TEDLIUM 36.2 (0.40) N/A
. . . *: our reproduced baselines
Visualization

* perform phoneme-level decoding and retrieve corresponding
input lip images.
* UniLip successfully maps different phonemes to different lip
shapes, such as "CH" and "M".
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