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We report more detailed results of unsupervised and semi-supervised VSR in Section
1 and Section 2, respectively. Finally, we provide some detailed discussions in Section 3.

1 Unsupervised VSR

In this section, we first provide more implementation details in Section 1.1, which are applied
for all the experiments of unsupervised VSR including the ones in the main submission, and
then report our results of zero-shot unsupervised VSR in Section 1.2.

1.1 Implementation Details
For the generator G, the scaling factor of BatchNorm is set to 30 as [3]. The feature dimen-
sion of the whole multi-head self-attention module is the same as the dimension of the input
visual features, i.e. 1024 for the Large model and 768 for the Base model, while the dimen-
sion of each attention head is 64. In our discriminator D, its final causal convolutional layer’s
output is mean averaged along the temporal dimension and squeezed into the range of [0,1]
by a softmax function to compute the binary CE loss. The (input channel, output channel) of
the three causal convolution layers are (V,384), (384,384), and (384,1), respectively, where
V denotes the vocabulary size of phonemes. We use a set of 44 phonemes in our case.

All of our models in different settings are trained on four GeForce RTX 3090 GPUs. The
stride of G’s convolution is set to 2 for training and 1 for inference to encourage G to produce
longer outputs[3]. We leverage the popular HLG decoding to transform G’s phoneme-level
outputs into word-level sentences, which involves G’s outputs (H), a pronunciation lexicon
(L), and word-level n-gram language models (G). We create the pronunciation lexicon with
the G2P tool [4] on the text and train n-gram language models separately with the uni-modal
text corpus introduced during adversarial training. D is not used in inference.
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1.2 Zero-Shot Unsupervised VSR

Experimental Settings. In this section, we present zero-shot unsupervised results where
both training videos and texts come from other dataset which is different from the test
data. Since the training videos of LRS3 have been utilized during the feature extractor’s
pre-training[9], we couldn’t create a "zero-shot" setting for LRS3 and only provide the zero-
shot results on LRS2. For a detailed comparison, we also provide results obtained with the
videos from LRS2 but trained with the uni-modal texts from other datasets, i.e. TEDLIUM
and Cantab.
Conclusions. As shown in Table 1, UniLip shows strong performances even in the harsh
condition where both training videos and texts are different from the test set. In the four
experiments, most of them obtain similar performances with only a slight degradation com-
pared to the counterpart where training videos are from LRS2. Surprisingly, when training
texts are from TEDLIUM, the result using Vox2-en-433h as training videos even outper-
forms using LRS2 by 1.6%. These results show that UniLip is capable of learning the correct
visual-textual mapping even using both uni-modal videos and uni-modal texts for lip reading
in a zero-shot setting.

Table 1: Results of Zero-shot Unsupervised VSR on LRS2
Training Video Training Text Test WER/%(↓)

LRS2
TEDLIUM

57.3
LRS3 56.6(0.7↓)

Vox2-en-433h 58.9(1.6↑)
LRS2

Cantab
58.9

LRS3 59.9(1.0↑)
Vox2-en-433h 59.7(0.8↑)

2 Semi-Supervised VSR

In this section, we report our detailed experimental settings, together with more evaluation
of UniLip’s ability to co-work with existing supervised frameworks.

2.1 Detailed Experimental Settings

For each lip reading dataset, i.e. LRS2 or LRS3, we compare the performances of two types
of models: the supervised baseline model and the semi-supervised models. The supervised
baselines in this setting are marked with *, which are reproduced following the fine-tuning
pipeline in [9] with a smaller and shallower 6-layer Transformer decoder due to the con-
straint of computation budgets. The decoder has a hidden dimension of 256 and feedforward
dimentsion of 2048 for both the Base and Large models. Compared with the supervised base-
line, our semi-supervised version firstly trains unsupervised models G and D with uni-modal
data, and then performs supervised fine-tuning with video-text pairs involving an extra loss
LGAN from D, as shown in equation (6) of the main submission. When computing LGAN , we
first feed the encoder’s outputs to G to generate phonemes, and then evaluate the realness of
the phonemes with D.

Citation
Citation
{Zhu, Zhou, Zhang, Liu, Jiao, Zhang, Dai, Jiang, Li, and Wei} 2023

Citation
Citation
{Zhu, Zhou, Zhang, Liu, Jiao, Zhang, Dai, Jiang, Li, and Wei} 2023



XIA, YANG, SHAN AND CHEN: UNILIP: UNI-MODAL DATA FOR LIP READING 3

2.2 Incorporation with Other Supervised Approaches
Motivation. Besides the evaluation of UniLip to co-work with Seq2Seq[7], we evaluate
UniLip’s ability to be incorporated into other supervised training frameworks. We choose
three popular supervised frameworks in lip reading for evaluation: Seq2Seq, CTC, and the
hybrid of both[1, 8].
Detailed Experimental Settings. We report the performances of the Base model under both
supervised and semi-supervised settings on LRS2. The results are shown in Table 2. The
GAN model used during semi-supervised training is obtained with the uni-modal videos of
Vox2-en-433h and uni-modal texts of TEDLIUM. The first column indicates the correspond-
ing supervised training approach, where the hybrid of Seq2Seq and CTC are shortened as
"Seq2Seq&CTC". The second and third columns are the test WERs obtained without and
with the incorporation of UniLip, respectively. With the incorporation of UniLip, the model
receives an extra loss LGAN besides the supervised loss, e.g. CE loss or CTC loss. The four
column shows the relative Word Error Rate Reduction (WERR) introduced by UniLip. The
down arrows mean that lower is better.

Table 2: Evaluation of Supervised Approaches on LRS2
Supervised Approach Baseline/%(↓) Ours/%(↓) Relative WERR/%(↓)

Seq2Seq 32.0 31.0 3.1
CTC 36.2 35.8 1.1

Seq2Seq&CTC 29.9 29.4 1.7

Conclusions. As shown in Table 2, the introduction of UniLip steadily improves the per-
formance with all three approaches, showing our method’s ability to co-work with different
supervised frameworks.

3 Discussions
Training&Inference Overheads. Besides the performance potential, UniLip also shows
advantages on training and inference overheads, including model size, training strategies,
training duration, and inference speed. Typically, sentence-level supervised training in lip
reading often requires heavyweight models, complex training strategies, and a long training
time. The inference speed of attention-based Seq2Seq models is further limited due to the
multi-pass nature of beam search. While our model is super lightweight, which only involves
a half number of parameters of ResNet18[2], it could also be directly trained in an end-to-
end way and doesn’t require any complex training strategies such as curriculum learning[5].
With four GeForce RTX 3090 GPUs, it only takes five hours to fully converge. In addition,
our model is super fast to infer. During inference, inferring all the samples on the test set of
LRS3 only takes about 1.5 minutes, which is much faster than attention-based beam search
and CTC prefix beam search. The whole lightweight design makes it suitable for real-world
applications where the computation budget is limited.
Loss Weights. Besides the classical adversarial objectives, we introduce four task-oriented
auxiliary objective targets: gradient penalty Lgp, smoothness penalty Lsp, phoneme diversity
loss Lpd , and auxiliary prediction loss Laux. With four task-oriented auxiliary losses, a
natural concern is how to adjust their weights to make the whole objective effectively guide
the training process. Our rule of thumb is using fixed weights of G-related losses(Lsp, Lpd ,
and Laux) and only adjusting the weights of Lgp with respect to different text datasets. In
our experiments, we use weights 0.1, 3.0, 0.5 for G-related losses (Lsp, Lpd , and Laux) in all
experiments and only adjust the weights of Lgp when using different text datasets. Lgp slows
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down D’s pace of fitting real samples by constraining D’s gradient norm on mixtures of real
and fake samples, which leads to its close influence on D’s ability to fit different text corpus.
Generally speaking, the smaller Lgp is, the easier D fits the uni-modal texts. For example,
the huge domain gap between audiobooks and TED talks makes the texts of LibriSpeech
hard to be fitted into our task, so we should use a relatively smaller value of Lgp compared
with its value on other text datasets.
Length Choice of N-gram Clips. The length range of n-gram clips is set to [20,25), in-
stead of a single fixed-length, in our experiments. In this case, every n-gram clip contains
the phonemes of about 5 words, so learning linguistic priors from uni-modal texts could be
viewed as 5-gram word-level language modeling. In this range, every n-gram clip contains
roughly the phonemes of 5 or 6 words, so learning linguistic priors from uni-modal texts
could be viewed as 5-gram or 6-gram word-level language modeling, which we found ap-
propriate for our task. On the other hand, the lengths of n-gram clips vary slightly with each
other with a maximum of 4. This helps ease the difficulty of D’s learning because D doesn’t
have to fit the inputs beyond this range. The reason why we didn’t use a fixed value for
the lengths of n-gram clips is that picking a sub-sequence of consecutive phonemes with a
fixed length can not always be satisfied and often requires excessive clamping on the original
sequence.
Choice of Tokenization Unit. In sequence prediction tasks, such as lip reading and Au-
tomatic Speech Recognition (ASR), the most popular choices of tokenization unit include
chars, sub-word invariants, e.g. Byte-Pair Encoding(BPE)[6], and phonemes. Among them,
chars are combinations of characters, and sub-words are obtained by statistically decompos-
ing words into smaller units. Neither of them has a relation to pronunciation patterns. On
the other hand, each phoneme could represent a distinct auditory vocal pattern, making it a
candidate for our lip reading task. Even though the mapping between phonemes and visemes
is not one-to-one due to the existence of homophones, we empirically found that it is not a
severe problem in our task and adopt phoneme as the tokenization unit in all unsupervised
experiments. We’ve also experimented with char or BPE, but neither of them successfully
converge in our preliminary experiments.
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