Supplementary Material: Domain-Sum Feature Transformation For Multi-Target Domain Adaptation

Takumi Kobayashi^{1,2} takumi.kobayashi@aist.go.jp Lincon S. Souza¹ lincon.souza@aist.go.jp Kazuhiro Fukui² kfukui@cs.tsukuba.ac.jp

¹ National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba, Japan

² University of Tsukuba Tsukuba, Japan

A Proofs

Preliminary. The geodesic path between $\boldsymbol{U}_{S} \in \mathbb{R}^{d \times r}$ and $\boldsymbol{U}_{T} \in \mathbb{R}^{d \times r}$ on a Grassmann manifold is described by

$$\boldsymbol{U}_{(t)} = \boldsymbol{U}_{\mathcal{S}}\boldsymbol{S}\boldsymbol{\Gamma}_{(t)} - \bar{\boldsymbol{U}}_{\mathcal{S}}\bar{\boldsymbol{S}}\boldsymbol{\Sigma}_{(t)}, \ t \in [0,1],$$
(A.0.1)

where $\bar{\boldsymbol{U}}_{S} \in \mathbb{R}^{d-r \times r}$ is an orthogonal complement matrix to \boldsymbol{U}_{S} and $\boldsymbol{S} \in \mathbb{R}^{r \times r}$ and $\bar{\boldsymbol{S}} \in \mathbb{R}^{d-r \times r}$ are orthonormal matrices given by the (generalized) SVD of

$$\boldsymbol{U}_{\boldsymbol{S}}^{\top}\boldsymbol{U}_{\boldsymbol{T}} = \boldsymbol{S}\boldsymbol{\Gamma}\boldsymbol{T}^{\top}, \qquad \quad \boldsymbol{\bar{U}}_{\boldsymbol{S}}^{\top}\boldsymbol{U}_{\boldsymbol{T}} = -\boldsymbol{\bar{S}}\boldsymbol{\Sigma}\boldsymbol{T}^{\top}, \qquad (A.0.2)$$

$$\boldsymbol{\Gamma} = \operatorname{diag}(\{\cos \theta_k\}_{k=1}^r), \qquad \boldsymbol{\Sigma} = \operatorname{diag}(\{\sin \theta_k\}_{k=1}^r), \qquad (A.0.3)$$

$$\boldsymbol{\Gamma}_{(t)} = \operatorname{diag}(\{\cos(t\theta_k)\}_{k=1}^r), \qquad \boldsymbol{\Sigma}_{(t)} = \operatorname{diag}(\{\sin(t\theta_k)\}_{k=1}^r), \qquad (A.0.4)$$

which use an orthonormal matrix $\boldsymbol{T} \in \mathbb{R}^{r \times r}$ and the canonical angles $\{\boldsymbol{\theta}_k\}_{k=1}^r$ between \boldsymbol{U}_{S} and \boldsymbol{U}_{T} .

Based on the geodesic path, the gradient flow kernel (GFK) matrix [1] is formulated in

$$\boldsymbol{G} = [\boldsymbol{U}_{\mathcal{S}}\boldsymbol{S}, \bar{\boldsymbol{U}}_{\mathcal{S}}\bar{\boldsymbol{S}}] \begin{bmatrix} \boldsymbol{\Lambda}_1 & \boldsymbol{\Lambda}_2 \\ \boldsymbol{\Lambda}_2 & \boldsymbol{\Lambda}_3 \end{bmatrix} [\boldsymbol{U}_{\mathcal{S}}\boldsymbol{S}, \bar{\boldsymbol{U}}_{\mathcal{S}}\bar{\boldsymbol{S}}]^{\top}, \qquad (A.0.5)$$

where the diagonal matrices are

$$\mathbf{\Lambda}_{1} = \operatorname{diag}\left(\left\{1 + \frac{\sin(2\theta_{k})}{2\theta_{k}}\right\}_{k=1}^{r}\right), \tag{A.0.6}$$

$$\mathbf{A}_{2} = \operatorname{diag}\left(\left\{\frac{\cos(2\theta_{k}) - 1}{2\theta_{k}}\right\}_{k=1}^{r}\right), \tag{A.0.7}$$

$$\mathbf{A}_{3} = \operatorname{diag}\left(\left\{1 - \frac{\sin(2\theta_{k})}{2\theta_{k}}\right\}_{k=1}^{r}\right).$$
(A.0.8)

© 2023. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.

2 T. KOBAYASHI, L. SOUZA, K. FUKUI: DOMAIN-SUM FEATURE TRANSFORMATION

On the other hand, the proposed method is based on the domain-sum matrix of

$$\boldsymbol{H} = \sum_{t \in \{0,1\}} \boldsymbol{U}_{(t)} \boldsymbol{U}_{(t)}^{\top} = \boldsymbol{U}_{\mathcal{S}} \boldsymbol{U}_{\mathcal{S}}^{\top} + \boldsymbol{U}_{\mathcal{T}} \boldsymbol{U}_{\mathcal{T}}^{\top} = \boldsymbol{P}_{\mathcal{S}} + \boldsymbol{P}_{\mathcal{T}}.$$
 (A.0.9)

The main manuscript presents several relationships among these matrices which are proven as follows.

A.1 **Proof for Proposition 1**

Proposition 1. *GFK matrix* G (A.0.5) *and DS matrix* H (A.0.9) *are similarly eigen-decomposed as*

$$\boldsymbol{G} = [\boldsymbol{U}_+, \boldsymbol{U}_-] \begin{bmatrix} \boldsymbol{\Psi}_+ \\ \boldsymbol{\Psi}_- \end{bmatrix} [\boldsymbol{U}_+, \boldsymbol{U}_-]^\top, \qquad (A.1.1)$$

$$\boldsymbol{H} = [\boldsymbol{U}_{+}, \boldsymbol{U}_{-}] \begin{bmatrix} \boldsymbol{\Phi}_{+} \\ \boldsymbol{\Phi}_{-} \end{bmatrix} [\boldsymbol{U}_{+}, \boldsymbol{U}_{-}]^{\top}, \qquad (A.1.2)$$

where

$$\boldsymbol{U}_{\pm} = \operatorname{colnorm}(\boldsymbol{U}_{\mathcal{S}}\boldsymbol{S} \pm \boldsymbol{U}_{\mathcal{T}}\boldsymbol{T}) \in \mathbb{R}^{d \times r}, \qquad (A.1.3)$$

$$\Psi_{\pm} = \operatorname{diag}(\{1 \pm \operatorname{sinc} \theta_k\}_{k=1}^r), \qquad (A.1.4)$$

$$\mathbf{\Phi}_{\pm} = \operatorname{diag}(\{1 \pm \cos \theta_k\}_{k=1}^r), \tag{A.1.5}$$

and colnorm is a column-wise normalization operator.

Proof. Based on the definition (A.0.9), **H** is written as

$$\boldsymbol{H} = [\boldsymbol{U}_{S}, \boldsymbol{U}_{T}][\boldsymbol{U}_{S}, \boldsymbol{U}_{T}]^{\top} = \frac{1}{2}[\boldsymbol{U}_{S}, \boldsymbol{U}_{T}] \begin{bmatrix} \boldsymbol{S} & \boldsymbol{S} \\ \boldsymbol{T} & -\boldsymbol{T} \end{bmatrix} \begin{bmatrix} \boldsymbol{S} & \boldsymbol{S} \\ \boldsymbol{T} & -\boldsymbol{T} \end{bmatrix}^{\top} [\boldsymbol{U}_{S}, \boldsymbol{U}_{T}]^{\top}, \qquad (A.1.6)$$

where we apply the orthonormal matrices S and T in (A.0.2) to provide

$$\boldsymbol{I} = \frac{1}{2} \begin{bmatrix} \boldsymbol{S} & \boldsymbol{S} \\ \boldsymbol{T} & -\boldsymbol{T} \end{bmatrix} \begin{bmatrix} \boldsymbol{S} & \boldsymbol{S} \\ \boldsymbol{T} & -\boldsymbol{T} \end{bmatrix}^{\top}.$$
 (A.1.7)

By using the following relationships,

$$\frac{1}{2} (\boldsymbol{U}_{\mathcal{S}}\boldsymbol{S} + \boldsymbol{U}_{\mathcal{T}}\boldsymbol{T})^{\top} (\boldsymbol{U}_{\mathcal{S}}\boldsymbol{S} + \boldsymbol{U}_{\mathcal{T}}\boldsymbol{T}) = \boldsymbol{I} + \boldsymbol{\Gamma}, \qquad (A.1.8)$$

$$\frac{1}{2} (\boldsymbol{U}_{\mathcal{S}}\boldsymbol{S} - \boldsymbol{U}_{\mathcal{T}}\boldsymbol{T})^{\top} (\boldsymbol{U}_{\mathcal{S}}\boldsymbol{S} + \boldsymbol{U}_{\mathcal{T}}\boldsymbol{T}) = \boldsymbol{0}, \qquad (A.1.9)$$

$$\frac{1}{2} (\boldsymbol{U}_{S}\boldsymbol{S} - \boldsymbol{U}_{T}\boldsymbol{T})^{\top} (\boldsymbol{U}_{S}\boldsymbol{S} - \boldsymbol{U}_{T}\boldsymbol{T}) = \boldsymbol{I} - \boldsymbol{\Gamma}, \qquad (A.1.10)$$

(A.1.6) is reduced into

$$\boldsymbol{H} = \frac{1}{2} [\boldsymbol{U}_{\mathcal{S}}\boldsymbol{S} + \boldsymbol{U}_{\mathcal{T}}\boldsymbol{T}, \boldsymbol{U}_{\mathcal{S}}\boldsymbol{S} - \boldsymbol{U}_{\mathcal{T}}\boldsymbol{T}] [\boldsymbol{U}_{\mathcal{S}}\boldsymbol{S} + \boldsymbol{U}_{\mathcal{T}}\boldsymbol{T}, \boldsymbol{U}_{\mathcal{S}}\boldsymbol{S} - \boldsymbol{U}_{\mathcal{T}}\boldsymbol{T}]^{\top}$$
(A.1.11)

$$= [\boldsymbol{U}_{+}, \boldsymbol{U}_{-}] \begin{bmatrix} \boldsymbol{I} + \boldsymbol{\Gamma} \\ \boldsymbol{I} - \boldsymbol{\Gamma} \end{bmatrix}^{\top} [\boldsymbol{U}_{+}, \boldsymbol{U}_{-}]^{\top}, \qquad (A.1.12)$$

which is the eigen-decomposition of **H** using $\Gamma = \text{diag}(\{\cos \theta_k\}_{k=1}^r)$ in (A.0.3) and

$$\boldsymbol{U}_{\pm} = \operatorname{colnorm} \left\{ \boldsymbol{U}_{\mathcal{S}} \boldsymbol{S} \pm \boldsymbol{U}_{\mathcal{T}} \boldsymbol{T} \right\} = \frac{1}{\sqrt{2}} (\boldsymbol{U}_{\mathcal{S}} \boldsymbol{S} \pm \boldsymbol{U}_{\mathcal{T}} \boldsymbol{T}) (\boldsymbol{I} \pm \boldsymbol{\Gamma})^{-\frac{1}{2}}.$$
(A.1.13)

As to G, for simplicity, we focus on the k-th component in (A.0.5) as

$$\boldsymbol{G}_{[k]} = [\boldsymbol{U}_{\mathcal{S}}\boldsymbol{s}_{k}, \bar{\boldsymbol{U}}_{\mathcal{S}}\bar{\boldsymbol{s}}_{k}] \begin{bmatrix} 1 + \frac{\sin(2\theta_{k})}{2\theta_{k}} & \frac{\cos(2\theta_{k}) - 1}{2\theta_{k}} \\ \frac{\cos(2\theta_{k}) - 1}{2\theta_{k}} & 1 - \frac{\sin(2\theta_{k})}{2\theta_{k}} \end{bmatrix} [\boldsymbol{U}_{\mathcal{S}}\boldsymbol{s}_{k}, \bar{\boldsymbol{U}}_{\mathcal{S}}\bar{\boldsymbol{s}}_{k}]^{\top}, \quad (A.1.14)$$

and omit the subscript k from now on. We can rewrite the parts based on the canonical angle θ by using sinc $\theta = \frac{\sin \theta}{\theta}$ for $0 \le \theta \le \frac{\pi}{2}$, into

$$1 + \frac{\sin(2\theta)}{2\theta} = 1 + \sin \theta \cos \theta, \qquad (A.1.15)$$

$$\frac{\cos(2\theta) - 1}{2\theta} = -\sin \theta \sin \theta, \qquad (A.1.16)$$

$$1 - \frac{\sin(2\theta)}{2\theta} = 1 - \sin \theta \cos \theta. \tag{A.1.17}$$

Thereby, we have

$$\begin{bmatrix} 1 + \frac{\sin(2\theta)}{2\theta} & \frac{\cos(2\theta) - 1}{2\theta} \\ \frac{\cos(2\theta) - 1}{2\theta} & 1 - \frac{\sin(2\theta)}{2\theta} \end{bmatrix}$$
(A.1.18)

$$= \mathbf{I} + \operatorname{sinc} \theta \begin{bmatrix} \cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta \end{bmatrix}$$
(A.1.19)

$$= \mathbf{I} + \operatorname{sinc} \theta \begin{bmatrix} 2\cos^2\frac{\theta}{2} - 1 & -2\cos\frac{\theta}{2}\sin\frac{\theta}{2} \\ -2\cos\frac{\theta}{2}\sin\frac{\theta}{2} & 2\sin^2\frac{\theta}{2} - 1 \end{bmatrix}$$
(A.1.20)

$$= (1 - \operatorname{sinc} \theta) \boldsymbol{I} + 2\operatorname{sinc} \theta \begin{bmatrix} \cos \frac{\theta}{2} \\ -\sin \frac{\theta}{2} \end{bmatrix} \begin{bmatrix} \cos \frac{\theta}{2} \\ -\sin \frac{\theta}{2} \end{bmatrix}^{\top}$$
(A.1.21)

$$= \begin{bmatrix} \cos\frac{\theta}{2} & \sin\frac{\theta}{2} \\ -\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix} \begin{bmatrix} 1 + \sin c\theta \\ 1 - \sin c\theta \end{bmatrix} \begin{bmatrix} \cos\frac{\theta}{2} & \sin\frac{\theta}{2} \\ -\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}^{\top}.$$
 (A.1.22)

This is put into (A.1.14) to produce

$$\boldsymbol{G}_{[k]} = [\boldsymbol{u}_{+k}, \boldsymbol{u}_{-k}] \begin{bmatrix} 1 + \operatorname{sinc} \theta_k \\ 1 - \operatorname{sinc} \theta_k \end{bmatrix} [\boldsymbol{u}_{+k}, \boldsymbol{u}_{-k}]^\top, \quad (A.1.23)$$

where we apply (A.1.32) and (A.1.38) to provide

$$\boldsymbol{u}_{+k} = \boldsymbol{U}_{\mathcal{S}}\boldsymbol{s}_k \cos\frac{\theta_k}{2} - \bar{\boldsymbol{U}}_{\mathcal{S}}\bar{\boldsymbol{s}}_k \sin\frac{\theta_k}{2}, \quad \boldsymbol{u}_{-k} = \boldsymbol{U}_{\mathcal{S}}\boldsymbol{s}_k \sin\frac{\theta_k}{2} + \bar{\boldsymbol{U}}_{\mathcal{S}}\bar{\boldsymbol{s}}_k \cos\frac{\theta_k}{2}.$$
(A.1.24)

Thus, through aggregating (A.1.23) for all k, we can finally obtain the eigen-decomposition of **G** in (A.1.1).

We here show the following lemma regarding the principal component subspace U_+ .

Lemma 1. The principal component subspace $U_+ = \text{colnorm}(U_s S + U_\tau T)$ is the center point on the geodesic path (A.0.1) as

$$\boldsymbol{U}_{+} = \boldsymbol{U}_{(t=\frac{1}{2})} = \boldsymbol{U}_{\mathcal{S}}\boldsymbol{S}\boldsymbol{\Gamma}_{(t=\frac{1}{2})} - \bar{\boldsymbol{U}}_{\mathcal{S}}\bar{\boldsymbol{S}}\boldsymbol{\Sigma}_{(t=\frac{1}{2})}.$$
 (A.1.25)

Proof. In (A.0.2), for clarity, we describe $\Gamma = \cos \Theta$ and $\Sigma = \sin \Theta$ with $\Theta = \text{diag}(\{\theta_k\}_{k=1}^r)$, and thereby obtain

$$\boldsymbol{U}_{\mathcal{S}}\boldsymbol{U}_{\mathcal{S}}^{\top}\boldsymbol{U}_{\mathcal{T}}\boldsymbol{T} + \boldsymbol{U}_{\mathcal{S}}\boldsymbol{S} = \boldsymbol{U}_{\mathcal{S}}\boldsymbol{S}(\cos\boldsymbol{\Theta} + \boldsymbol{I}) = 2\boldsymbol{U}_{\mathcal{S}}\boldsymbol{S}\cos^{2}\frac{\boldsymbol{\Theta}}{2}, \qquad (A.1.26)$$

$$\bar{\boldsymbol{U}}_{\mathcal{S}}\bar{\boldsymbol{U}}_{\mathcal{S}}^{\top}\boldsymbol{U}_{\mathcal{T}}\boldsymbol{T} = -\bar{\boldsymbol{U}}_{\mathcal{S}}\bar{\boldsymbol{S}}\sin\boldsymbol{\Theta} = -2\bar{\boldsymbol{U}}_{\mathcal{S}}\bar{\boldsymbol{S}}\sin\frac{\boldsymbol{\Theta}}{2}\cos\frac{\boldsymbol{\Theta}}{2}.$$
 (A.1.27)

The center point on the geodesic path is thus written by

$$\boldsymbol{U}_{\mathcal{S}}\boldsymbol{S}\boldsymbol{\Gamma}_{(t=\frac{1}{2})} - \bar{\boldsymbol{U}}_{\mathcal{S}}\bar{\boldsymbol{S}}\boldsymbol{\Sigma}_{(t=\frac{1}{2})}$$
(A.1.28)

$$= \boldsymbol{U}_{S}\boldsymbol{S}\cos\frac{\boldsymbol{\Theta}}{2} - \bar{\boldsymbol{U}}_{S}\bar{\boldsymbol{S}}\sin\frac{\boldsymbol{\Theta}}{2}$$
(A.1.29)

$$= \frac{1}{2} \left\{ \boldsymbol{U}_{\mathcal{S}} \boldsymbol{U}_{\mathcal{S}}^{\top} \boldsymbol{U}_{\mathcal{T}} \boldsymbol{T} + \boldsymbol{U}_{\mathcal{S}} \boldsymbol{S} + \bar{\boldsymbol{U}}_{\mathcal{S}} \bar{\boldsymbol{U}}_{\mathcal{S}}^{\top} \boldsymbol{U}_{\mathcal{T}} \boldsymbol{T} \right\} \cos^{-1} \frac{\boldsymbol{\Theta}}{2}$$
(A.1.30)

$$= \frac{1}{2} \left\{ \boldsymbol{U}_{\mathcal{S}} \boldsymbol{S} + (\boldsymbol{U}_{\mathcal{S}} \boldsymbol{U}_{\mathcal{S}}^{\top} + \bar{\boldsymbol{U}}_{\mathcal{S}} \bar{\boldsymbol{U}}_{\mathcal{S}}^{\top}) \boldsymbol{U}_{\mathcal{T}} \boldsymbol{T} \right\} \cos^{-1} \frac{\boldsymbol{\Theta}}{2}$$
(A.1.31)

$$= \frac{1}{2} \left(\boldsymbol{U}_{S} \boldsymbol{S} + \boldsymbol{U}_{T} \boldsymbol{T} \right) \cos^{-1} \frac{\boldsymbol{\Theta}}{2} = \boldsymbol{U}_{+}, \qquad (A.1.32)$$

where we use

$$\boldsymbol{U}_{\mathcal{S}}\boldsymbol{U}_{\mathcal{S}}^{\top} + \bar{\boldsymbol{U}}_{\mathcal{S}}\bar{\boldsymbol{U}}_{\mathcal{S}}^{\top} = \boldsymbol{I}, \qquad (A.1.33)$$

$$\boldsymbol{U}_{+} = \operatorname{colnorm} \left\{ \boldsymbol{U}_{S} \boldsymbol{S} + \boldsymbol{U}_{T} \boldsymbol{T} \right\}, \qquad (A.1.34)$$

$$(\boldsymbol{U}_{\mathcal{S}}\boldsymbol{S}+\boldsymbol{U}_{\mathcal{T}}\boldsymbol{T})^{\top}(\boldsymbol{U}_{\mathcal{S}}\boldsymbol{S}+\boldsymbol{U}_{\mathcal{T}}\boldsymbol{T})=2\boldsymbol{I}+2\cos\boldsymbol{\Theta}=4\cos^{2}\frac{\boldsymbol{\Theta}}{2}.$$
 (A.1.35)

Similarly, we can also obtain

$$\boldsymbol{U}_{\mathcal{S}}\boldsymbol{S}\sin\frac{\boldsymbol{\Theta}}{2} + \bar{\boldsymbol{U}}_{\mathcal{S}}\bar{\boldsymbol{S}}\cos\frac{\boldsymbol{\Theta}}{2}$$
(A.1.36)

$$= \frac{1}{2} \{ -\boldsymbol{U}_{\mathcal{S}} \boldsymbol{U}_{\mathcal{S}}^{\top} \boldsymbol{U}_{\mathcal{T}} \boldsymbol{T} + \boldsymbol{U}_{\mathcal{S}} \boldsymbol{S} - \bar{\boldsymbol{U}}_{\mathcal{S}} \bar{\boldsymbol{U}}_{\mathcal{S}}^{\top} \boldsymbol{U}_{\mathcal{T}} \boldsymbol{T} \} \sin^{-1} \frac{\boldsymbol{\Theta}}{2}$$
(A.1.37)

$$= \frac{1}{2} \left(\boldsymbol{U}_{S} \boldsymbol{S} - \boldsymbol{U}_{T} \boldsymbol{T} \right) \sin^{-1} \frac{\boldsymbol{\Theta}}{2} = \boldsymbol{U}_{-}.$$
(A.1.38)

A.2 **Proof for Proposition 2**

Proposition 2. Suppose backbone DNN can flexibly produce a feature vector \mathbf{x} which is normalized as $\|\mathbf{x}\|_2 = 1$; for a well separable classifier $\mathbf{W} = \{\mathbf{w}_c\}_{c=1}^C$, it can produce $\{\mathbf{x}_i\}_{i=1}^n$ such that $\mathbf{w}_{y_i}^{\top}(\mathbf{P}_s + \mathbf{P}_{\tau})\mathbf{x}_i \ge \mathbf{w}_c^{\top}(\mathbf{P}_s + \mathbf{P}_{\tau})\mathbf{x}_i \ \forall c$, where \mathbf{P}_s is a r-rank subspace projection matrix for \mathbf{x}_i , i.e., $\mathbf{x}_i = \mathbf{P}_s \mathbf{x}_i$, and \mathbf{P}_{τ} is an arbitrary subspace of rank r. We partition a feature space into $\mathbb{S}(\mathbf{0}; \mathbf{P}_{\tau}) = \{\mathbf{x} \in \mathbf{P}_s | \|\mathbf{x}\|_2 = 1, \angle(\mathbf{P}_s, \mathbf{P}_{\tau}) = \mathbf{0}\}$ where \angle is an operator to

measure canonical angles. We define a softmax loss ℓ_{CE} optimized w.r.t $\mathbf{x} \in \mathbb{S}(\boldsymbol{\theta}; \boldsymbol{P}_{\tau})$ and \mathbf{W} , given $\boldsymbol{\theta}$ and \boldsymbol{P}_{τ} as

$$\ell_{CE}(\boldsymbol{\theta}; \boldsymbol{P}_{\tau}) = \min_{\{\boldsymbol{x}_i \in \mathbb{S}(\boldsymbol{\theta}; \boldsymbol{P}_{\tau})\}_{i=1}^n, \boldsymbol{W}} - \sum_{i=1}^n \log \frac{\exp(\boldsymbol{w}_{y_i}^{\top}(\boldsymbol{P}_{\mathcal{S}} + \boldsymbol{P}_{\tau})\boldsymbol{x}_i)}{\exp(\sum_c \boldsymbol{w}_c^{\top}(\boldsymbol{P}_{\mathcal{S}} + \boldsymbol{P}_{\tau})\boldsymbol{x}_i)}.$$
(A.2.1)

Then, we have the following relationship between the loss and the canonical angle $\boldsymbol{\theta}$;

$$\boldsymbol{\theta}^* \leq \boldsymbol{\theta} \Rightarrow \ell_{CE}(\boldsymbol{\theta}^*; \boldsymbol{P}_{\tau}) \leq \ell_{CE}(\boldsymbol{\theta}; \boldsymbol{P}_{\tau}).$$
(A.2.2)

Proof. Without loss of generality, such as by relying on representor theorem $[\mathbf{G}]$, the classifier weight vector \boldsymbol{w} is described by

$$\boldsymbol{w} = \sum_{i} (\boldsymbol{P}_{\mathcal{S}} + \boldsymbol{P}_{\mathcal{T}}) \boldsymbol{x}_{i} \boldsymbol{\alpha}_{i} = (\boldsymbol{P}_{\mathcal{S}} + \boldsymbol{P}_{\mathcal{T}}) \boldsymbol{w}_{\mathcal{S}}, \quad \boldsymbol{w}_{\mathcal{S}} \in \boldsymbol{P}_{\mathcal{S}}.$$
(A.2.3)

Thus, the classifier logit is given by

$$\boldsymbol{w}^{\top}(\boldsymbol{P}_{\mathcal{S}}+\boldsymbol{P}_{\mathcal{T}})\boldsymbol{x}=\boldsymbol{w}_{\mathcal{S}}^{\top}(\boldsymbol{P}_{\mathcal{S}}+\boldsymbol{P}_{\mathcal{T}})^{2}\boldsymbol{x}$$
(A.2.4)

$$= \boldsymbol{w}_{\mathcal{S}}^{\top} \boldsymbol{P}_{\mathcal{S}} (\boldsymbol{P}_{\mathcal{S}} + \boldsymbol{P}_{\mathcal{T}})^{2} \boldsymbol{P}_{\mathcal{S}} \boldsymbol{x} = \boldsymbol{w}_{\mathcal{S}}^{\top} (\boldsymbol{P}_{\mathcal{S}} + 3\boldsymbol{P}_{\mathcal{S}} \boldsymbol{P}_{\mathcal{T}} \boldsymbol{P}_{\mathcal{S}}) \boldsymbol{x}$$
(A.2.5)

$$= \boldsymbol{w}_{\mathcal{S}}^{\top} \boldsymbol{U}_{\mathcal{S}} \boldsymbol{S} (\boldsymbol{I} + 3\boldsymbol{\Gamma}^{2}) \boldsymbol{S}^{\top} \boldsymbol{U}_{\mathcal{S}}^{\top} \boldsymbol{x}$$
(A.2.6)

$$= \boldsymbol{w}_{\mathcal{S}}^{\top} \boldsymbol{U}_{\mathcal{S}} \boldsymbol{S} (\boldsymbol{I} + 3\cos^2 \boldsymbol{\Theta}) \boldsymbol{S}^{\top} \boldsymbol{U}_{\mathcal{S}}^{\top} \boldsymbol{x}, \qquad (A.2.7)$$

where we use (A.0.2) and

$$\boldsymbol{w}_{\mathcal{S}} = \boldsymbol{P}_{\mathcal{S}} \boldsymbol{w}_{\mathcal{S}}, \quad \boldsymbol{x} = \boldsymbol{P}_{\mathcal{S}} \boldsymbol{x}, \tag{A.2.8}$$

$$\boldsymbol{P}_{\mathcal{S}} = \boldsymbol{U}_{\mathcal{S}} \boldsymbol{U}_{\mathcal{S}}^{\top}, \quad \boldsymbol{P}_{\mathcal{T}} = \boldsymbol{U}_{\mathcal{T}} \boldsymbol{U}_{\mathcal{T}}^{\top}, \quad \boldsymbol{P}_{\mathcal{S}}^2 = \boldsymbol{P}_{\mathcal{S}}, \quad \boldsymbol{P}_{\mathcal{T}}^2 = \boldsymbol{P}_{\mathcal{T}}.$$
(A.2.9)

For P_{S}^{*} which produces the canonical angles θ^{*} with $\theta^{*} \leq \theta$, we can have x^{*} and w^{*} such that

$$s(\boldsymbol{I}+3\cos^2\boldsymbol{\Theta}^*)(\boldsymbol{U}_{\mathcal{S}}^*\boldsymbol{S}^*)^{\top}\boldsymbol{x}^* = (\boldsymbol{I}+3\cos^2\boldsymbol{\Theta})(\boldsymbol{U}_{\mathcal{S}}\boldsymbol{S})^{\top}\boldsymbol{x}, \qquad (A.2.10)$$

$$(\boldsymbol{U}_{\mathcal{S}}^*\boldsymbol{S}^*)^{\top}\boldsymbol{w}^* = (\boldsymbol{U}_{\mathcal{S}}\boldsymbol{S})^{\top}\boldsymbol{w}, \qquad (A.2.11)$$

where $s \leq 1$ since $\cos^2 \Theta^* \geq \cos^2 \Theta$ and $\|(\boldsymbol{U}_{\mathcal{S}}\boldsymbol{S})^\top \boldsymbol{x}\|_2 = \|(\boldsymbol{U}_{\mathcal{S}}^*\boldsymbol{S}^*)^\top \boldsymbol{x}^*\|_2 = 1$. Therefore, differences between class-wise logits are described by

$$0 < (\boldsymbol{w}_y - \boldsymbol{w}_c)^\top (\boldsymbol{P}_s + \boldsymbol{P}_\tau) \boldsymbol{x}$$
(A.2.12)

$$= (\boldsymbol{w}_{sy} - \boldsymbol{w}_{sc})^{\top} \boldsymbol{U}_{s} \boldsymbol{S} (\boldsymbol{I} + 3\cos^{2} \boldsymbol{\Theta}) (\boldsymbol{U}_{s} \boldsymbol{S})^{\top} \boldsymbol{x}$$
(A.2.13)

$$= s(\boldsymbol{w}_{sy}^* - \boldsymbol{w}_{sc}^*)^{\top} \boldsymbol{U}_{s}^* \boldsymbol{S}^* (\boldsymbol{I} + 3\cos^2 \boldsymbol{\Theta}^*) (\boldsymbol{U}_{s}^* \boldsymbol{S}^*)^{\top} \boldsymbol{x}^*$$
(A.2.14)

$$\leq (\boldsymbol{w}_{\mathcal{S}\mathcal{Y}}^* - \boldsymbol{w}_{\mathcal{S}\mathcal{C}}^*)^\top \boldsymbol{U}_{\mathcal{S}}^* \boldsymbol{S}^* (\boldsymbol{I} + 3\cos^2 \boldsymbol{\Theta}^*) (\boldsymbol{U}_{\mathcal{S}}^* \boldsymbol{S}^*)^\top \boldsymbol{x}^*$$
(A.2.15)

$$= (\boldsymbol{w}_{y}^{*} - \boldsymbol{w}_{c}^{*})^{\top} (\boldsymbol{P}_{s}^{*} + \boldsymbol{P}_{\tau}) \boldsymbol{x}^{*}, \qquad (A.2.16)$$

which leads to

$$\ell_{CE}(\boldsymbol{\theta}; \boldsymbol{P}_{\tau}) = -\sum_{i=1}^{n} \log \frac{\exp(\boldsymbol{w}_{y_i}^{\top} (\boldsymbol{P}_{\mathcal{S}} + \boldsymbol{P}_{\tau}) \boldsymbol{x}_i)}{\exp(\sum_c \boldsymbol{w}_c^{\top} (\boldsymbol{P}_{\mathcal{S}} + \boldsymbol{P}_{\tau}) \boldsymbol{x}_i)}$$
(A.2.17)

$$\geq -\sum_{i=1}^{n} \log \frac{\exp(\boldsymbol{w}_{y_i}^{*\top} (\boldsymbol{P}_{\mathcal{S}}^* + \boldsymbol{P}_{\mathcal{T}}) \boldsymbol{x}_i^*)}{\exp(\sum_c \boldsymbol{w}_c^{*\top} (\boldsymbol{P}_{\mathcal{S}}^* + \boldsymbol{P}_{\mathcal{T}}) \boldsymbol{x}_i^*)}$$
(A.2.18)

$$\geq \ell_{CE}(\boldsymbol{\theta}^*; \boldsymbol{P}_{\tau}). \tag{A.2.19}$$

5

Algorithm 1 Subspace extraction module

Input: $\mathbf{X} \in \mathbb{R}^{d \times B}$: features on a mini-batch of size *B*, *r*: subspace rank,

 $M \in \mathbb{R}^{d \times Q}$: memory bank to store samples,

Output: $\boldsymbol{P} \in \mathbb{R}^{d \times d}$: subspace projection matrix 1: $[\boldsymbol{X}, \mathbb{M}] = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{V}^{\top}$: SVD **[5]**

- 2: $\mathbf{P} = \mathbf{U}_{:r} \mathbf{U}_{:r}^{\top}$: extract the first *r*-rank basis vectors
- 3: Enqueue \ddot{X} to M and dequeue old samples from M
- 4: return P

Subspace computation B

As shown in Algorithm 1, a subspace is computed by applying stable SVD [1] to mini-batch samples and memory-bank samples. The memory bank which stores previous mini-batch samples is introduced in order to further stabilize the subspace computation by smoothly updating subspaces through mini-batch training; the performance is improved as shown in Table B.1. It should be noted that the back-propagation is not applied to the memory-bank samples, and this subspace computation is applied only on training as described in Sec. 2.3.

Tuble 2.1. Fertermanee results by memory bunk.													
	Office-31												
memory	A												
size	D W		А	A W		D	Avg.						
Q = 0	86.35	87.55	69.65	97.74	68.44	100.00	84.95						
<i>Q</i> = 32	88.55	88.18	72.20	97.86	72.56	100.00	86.56						

Table B 1. Performance results by memory bank

С Training protocol in deep domain adaptation

The deep domain adaptation is applied to the datasets in Table C.1 and trained with the following procedure. B image samples are randomly drawn from source and target domains, respectively, to simultaneously construct domain-specific mini-batches of size B. They are passed through the backbone of ResNet-50 [2] and the projection head to produce d-dimensional normalized features on which the domain adaptation methods work such as by means of transformation and/or regularization losses. A fully-connected classifier is finally applied to the features for constructing a primary loss based on softmax cross-entropy. The whole network is trained by SGD optimizer with momentum of 0.9, weight decay of 0.0005 and initial learning rate of 0.0003 for a backbone and 0.003 for other modules which are decayed by $(1+0.0003 \cdot t)^{-0.75}$ where t is the optimization step; the ResNet-50 backbone is pre-trained on ImageNet and thus is subject to smaller learning rate. The other parameters for respective datasets are shown in Table C.2.

			10	able $C.1. D$	alastis.			
Dataset		Do	mains	Classes	Samples			
Office-31	[8]	3	<u>A</u> mazon, <u>D</u> SI	31	4,110			
Office-Ho	ome 🛛	65	15,500					
Adaptiope [1] 3 Product, Real, Synthetic								36,900
DomainN	let 🖪	6	<u>C</u> lipart, <u>I</u> nfog	raph, <u>P</u> aint, Qu	345	569,010		
	Table C.2: Training parameters.							
	Datas	set	Feature dim. d	Subspace rank r	Batch size <i>B</i>	Memory size Q	Training steps	

32

64

128

352

32

64

128

64

32

64

128

320

25,000

40,000

80,000

160,000

Table C 1: Detecto

D Detailed performance results

256

256

512

512

Office-31

Office-Home

Adaptiope

DomainNet

In Table 4, we showed performance comparison on the tasks of multi-target domain adaptation, though averaging classification accuracies over the multiple target domains. Tables $D.1 \sim D.3$ detail the performances by reporting accuracies on respective target domains.

References

- Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsupervised domain adaptation. In *CVPR*, pages 2066–2073, 2012.
- [2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR, pages 770–778, 2016.
- [3] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching for multi-source domain adaptation. In *ICCV*, pages 1406–1415, 2019.
- [4] Tobias Ringwald and Rainer Stiefelhagen. Adaptiope: A modern benchmark for unsupervised domain adaptation. In WACV, pages 101–110, 2021.
- [5] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new domains. In ECCV, 2010.
- [6] Vladimir N. Vapnik. Statistical Learning Theory. Wiley, 1998.
- [7] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep hashing network for unsupervised domain adaptation. In *CVPR*, pages 5018–5027, 2017.
- [8] Wei Wang, Zheng Dang, Yinlin Hu, Pascal Fua, and Mathieu Salzmann. Robust differentiable svd. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2021.

8

Table D.1:	Detailed performance	results (accuracy	(%) of domai	n adaptation o	n Office-31
dataset.					

(a) Single-target domain adaptation (see Table 1 in the main manuscript)												
Method		Trans. matrix	A→D	$A {\rightarrow} W$	D→A	$D{\rightarrow}W$	$W {\rightarrow} A$	$W {\rightarrow} D$	Avg.			
Raw		I	82.93	78.99	66.13	97.86	65.74	100.00	81.94			
Auto-C	orr.	$A^{\frac{1}{2}}$	23.29	28.93	15.55	18.11	15.65	26.10	21.27			
CORAL	-	$oldsymbol{C}_{\mathcal{T}}^{rac{1}{2}}oldsymbol{C}_{\mathcal{S}}^{-rac{1}{2}}$	76.51	77.23	52.75	85.28	56.66	96.79	74.20			
Principa	al componen	t $\boldsymbol{U}_+ \boldsymbol{U}_+^\top$	81.93	78.11	64.64	95.85	65.32	99.00	80.81			
GFK		$oldsymbol{G}^{rac{1}{2}}$	85.14	84.53	70.57	97.74	69.47	100.00	84.58			
Sum-of-	-subspaces	$H^{\frac{1}{2}}$	84.74	85.03	71.00	97.74	69.86	100.00	84.73			
Ours	_	H	86.55	85.91	71.21	97.74	70.04	100.00	85.24			
Trans.	Reg.	Cls. Sub.	$A{\rightarrow} D$	$A {\rightarrow} W$	$D{\rightarrow}A$	$D{\rightarrow}W$	$W {\rightarrow} A$	$W {\rightarrow} D$	Avg.			
-	-	-	82.93	78.99	66.13	97.86	65.74	100.00	81.94			
-	\checkmark	-	82.33	84.78	72.20	97.23	70.36	99.80	84.45			
\checkmark	-	-	86.55	85.91	71.21	97.74	70.04	100.00	85.24			
\checkmark	\checkmark	-	87.15	85.79	72.10	96.98	71.32	100.00	85.56			
\checkmark	$\checkmark(\eta=2)$	-	84.54	86.79	71.49	96.86	68.05	99.80	84.59			
\checkmark	\checkmark	\checkmark	87.15	87.92	72.60	98.11	73.02	100.00	86.47			

$\checkmark (\eta = 2)$			-	84.54	86.7	9 71.4	9 96.	86 68	.05 99	.80				
	V	/	\checkmark	87.15	87.92	2 72.6	io 98.	11 73	.02 100	0.00				
Mul	lti-t	arget don	nain ad	aptati	on (see	e Table	e 2 in	the ma	in man	usc				
			Office-31											
			A	\rightarrow	D	\rightarrow	W	\rightarrow						
			D	W	Α	W	Α	D	Avg.	_				
		raw	82.93	78.99	66.13	97.86	65.74	100	81.94					
	ıcat	DANN	80.93	82.26	63.08	96.98	65.74	99.60	81.43					
	Col	BNM	85.94	87.30	61.85	94.84	63.22	98.19	81.89					
	uain	SCDA	85.14	87.04	59.67	93.08	63.54	99.20	81.28					
	Don	DSAN	87.15	89.18	65.39	96.48	64.71	98.80	83.62					
		Ours-c	88.96	87.80	71.92	97.86	71.35	100	86.31					
		DANN	84.94	86.16	65.85	94.59	69.72	98.19	83.24					
		BNM	84.94	87.17	60.67	90.31	65.81	98.19	81.18					
	Ault	SCDA	85.94	87.67	60.28	92.08	64.50	99.60	81.68					
	V	DSAN	84.74	86.92	61.24	92.70	65.07	98.39	81.51					
		Ours	88.55	88.18	72.20	97.86	72.56	100	86.56					
	po	+DANN	88.35	89.94	72.52	97.99	72.35	100	86.86					
	neth	+BNM	91.77	93.84	74.80	97.86	74.76	100	88.84					
	int n	+SCDA	88.96	90.94	72.38	97.99	72.02	100	87.05					
	Jo	+DSAN	89.96	91.95	72.95	97.86	73.09	100	87.64					

(b) N ript)

		Office-Home												
			$A \rightarrow$			$\mathrm{C}{ ightarrow}$			$P\!\!\rightarrow$			$R \! \rightarrow \!$		
		С	Р	R	A	Р	R	Α	С	R	А	С	Р	Avg.
	raw	46.03	55.96	67.34	52.62	60.22	61.90	54.64	47.40	73.08	67.04	52.76	77.07	59.67
ncat	DANN	39.06	44.51	57.54	47.14	51.50	52.54	52.45	47.38	65.14	67.28	50.49	73.03	54.00
C_{OI}	BNM	33.01	36.56	49.53	46.44	48.50	50.42	49.49	44.97	62.91	66.38	50.95	72.81	51.00
nain	SCDA	37.75	41.23	55.18	46.72	50.46	51.82	48.25	43.89	65.60	66.01	49.55	72.83	52.44
Don	DSAN	39.06	42.85	55.72	46.85	49.90	50.81	49.40	44.95	65.02	65.55	50.06	72.92	52.76
	Ours-c	56.22	70.24	76.04	60.65	68.75	71.72	61.39	50.42	77.85	69.80	55.72	80.33	66.59
	DANN	40.30	45.93	55.68	46.89	54.29	54.42	49.07	47.61	64.72	65.60	53.61	72.29	54.20
Ŀ.	BNM	34.69	38.59	51.50	45.57	49.47	50.77	47.30	45.20	62.68	65.22	51.18	73.35	51.29
Mult	SCDA	38.58	43.73	56.55	47.14	52.58	53.34	49.03	44.83	65.71	66.30	52.19	74.93	53.74
-	DSAN	31.07	34.83	46.39	44.05	46.14	47.90	46.11	44.08	61.79	64.94	50.36	72.43	49.17
	Ours	56.79	70.33	76.38	60.69	70.33	71.93	61.52	52.74	77.74	69.02	58.79	81.39	67.30
por	+DANN	55.03	69.61	75.83	62.22	71.95	72.53	62.05	56.66	77.76	72.11	60.57	82.16	68.21
neth	+BNM	58.63	71.80	77.09	64.52	73.89	74.39	65.10	56.24	78.88	70.58	60.60	82.36	69.51
intr	+SCDA	56.98	70.44	76.29	61.31	70.56	71.93	61.76	53.29	77.90	69.26	58.81	81.44	67.50
Joi	+DSAN	56.93	71.07	76.70	62.01	71.64	72.34	62.96	54.20	77.87	69.02	59.18	81.84	67.98

Table D.2: Detailed performance results (ac	uracy %) of multi-target domain adaptation or
Office-Home dataset.	

			Office-Home											
		А,0	$C \rightarrow$	P,F	m R ightarrow	A,l	$P \rightarrow$	C,F	m R ightarrow	$A,R \rightarrow$		C,I	\rightarrow	
		Р	R	Α	С	С	R	Α	Р	С	Р	Α	R	Avg.
	raw	59.18	66.01	63.29	51.00	53.65	74.78	63.29	70.96	51.73	66.84	55.38	67.91	62.00
ıcaı	DANN	56.23	63.94	65.27	53.88	55.03	74.23	63.37	67.06	49.46	65.62	52.00	65.21	60.94
Co	BNM	54.58	61.65	65.02	53.77	51.89	71.38	62.09	67.56	47.22	60.58	56.94	65.39	59.84
nain	SCDA	56.23	63.62	63.86	51.84	53.13	73.79	62.51	68.55	50.84	64.36	55.13	66.08	60.83
Don	DSAN	56.84	63.32	64.48	52.46	54.14	73.86	62.13	67.88	51.41	64.11	55.87	65.64	61.01
	Ours-c	76.05	79.39	70.21	56.88	59.54	82.05	70.70	81.19	61.67	80.56	66.87	80.08	72.10
	DANN	50.03	51.66	62.55	52.00	43.99	62.43	62.88	71.39	52.88	72.59	45.49	62.34	57.52
i.	BNM	50.01	51.00	64.85	51.71	45.11	62.22	65.72	73.46	51.43	73.39	49.20	62.86	58.41
Ault	SCDA	50.53	51.85	64.69	50.97	45.02	64.72	65.27	74.03	51.41	73.98	49.16	64.86	58.87
7	DSAN	37.17	41.15	63.58	48.43	42.93	60.55	65.06	72.65	49.64	72.88	45.57	60.82	55.04
	Ours	75.13	78.75	69.39	60.50	59.93	82.30	70.00	81.93	61.03	81.12	66.17	80.63	72.24
pou	+DANN	76.12	78.66	71.61	61.58	63.41	82.99	71.90	83.31	61.58	81.10	64.52	79.57	73.03
neth	+BNM	77.79	80.03	71.20	62.59	61.95	82.79	71.78	83.19	62.73	82.29	69.02	81.64	73.92
int n	+SCDA	75.49	78.77	69.55	61.01	60.21	82.30	70.42	82.14	61.19	81.32	66.63	80.81	72.49
Joi	+DSAN	76.95	79.23	69.59	60.96	60.32	81.98	70.25	82.54	61.70	81.21	66.79	80.42	72.66

		Adaptiope										
		P	\rightarrow	R	\rightarrow	S-	\rightarrow					
		R	S	Р	S	Р	R	Avg.				
	raw	68.70	39.91	76.82	34.28	51.95	34.62	51.05				
Domain Concai	DANN	70.89	46.62	75.24	37.02	56.37	33.67	53.30				
	BNM	69.11	39.89	76.20	33.94	56.37	35.06	51.76				
	SCDA	68.42	36.20	76.91	32.58	53.01	31.07	49.70				
	DSAN	68.76	38.54	76.93	33.33	54.63	32.85	50.84				
	Ours-c	73.59	41.94	88.70	34.07	64.44	41.84	57.43				
Multi.	Ours	71.61	48.58	87.55	41.63	66.76	48.60	60.79				
po	+DANN	74.20	54.59	90.27	52.09	70.73	53.50	65.90				
nethc	+BNM	72.03	52.45	88.11	43.67	68.72	50.55	62.59				
int 1	+SCDA	71.77	49.31	87.80	41.42	66.20	48.21	60.78				
Jo	+DSAN	72.26	50.49	88.02	42.45	67.33	49.52	61.68				

Table D.3: Detailed performance results (accuracy %) of multi-target domain adaptation on Adaptiope and DomainNet datasets.

			DomainNet									
			$C,I,P \rightarrow$			Q,R,S-	÷					
		Q	R	S	C	Ι	Р	Avg.				
	raw	3.37	11.65	10.28	16.53	5.04	14.34	10.20				
ıcat	DANN	2.42	10.87	9.13	16.65	5.26	14.07	9.73				
Co	BNM	3.16	11.33	9.94	16.75	5.25	14.44	10.14				
nain	SCDA	3.28	11.51	10.10	16.31	5.00	14.19	10.07				
Don	DSAN	2.59	10.26	8.27	16.21	4.42	13.01	9.13				
	Ours-c	10.34	41.32	35.09	45.46	15.27	38.65	31.02				
Multi.	Ours	12.92	63.48	50.28	61.84	20.56	50.50	43.26				
po	+DANN	12.53	61.75	48.77	60.52	20.66	50.04	42.38				
rethc	+BNM	12.67	63.49	50.39	61.57	20.38	50.46	43.16				
int n	+SCDA	12.96	63.67	50.09	61.59	20.47	50.64	43.24				
Jo	+DSAN	12.90	63.69	50.10	61.47	20.50	50.78	43.24				

		DomainNet												
			C,I	$[\rightarrow$			P,C	2→		$R,S \rightarrow$				
		Р	Q	R	S	C	Ι	R	S	C	Ι	Р	Q	Avg.
	raw	6.03	2.88	8.62	8.05	9.39	4.45	12.32	10.73	17.91	5.74	16.53	2.86	8.79
ncat	DANN	4.95	2.53	7.14	6.77	7.96	3.44	11.39	8.45	17.76	5.33	16.52	2.67	7.91
C_{0}	BNM	5.96	2.88	8.54	7.99	9.33	4.38	12.24	10.72	17.84	5.71	16.42	2.84	8.74
Domain	SCDA	5.96	2.88	8.48	7.95	9.29	4.43	12.14	10.65	17.82	5.71	16.41	2.83	8.71
	DSAN	4.41	1.38	7.69	5.09	8.23	3.17	13.11	9.29	17.22	4.83	17.61	2.35	7.86
	Ours-c	28.20	8.51	36.94	31.22	30.57	13.44	37.50	29.70	48.49	18.78	44.26	8.45	28.00
Multi.	Ours	40.77	12.81	57.95	44.88	48.11	16.35	53.35	38.16	61.01	21.60	51.53	12.53	38.25
po	+DANN	40.20	12.50	56.02	44.11	47.67	16.19	52.12	38.94	59.27	21.06	51.29	12.72	37.67
neth	+BNM	41.67	12.84	58.33	45.23	48.45	16.00	53.65	38.62	60.87	22.01	51.48	12.69	38.49
int 1	+SCDA	41.67	12.82	58.25	45.15	48.25	16.14	53.59	38.88	60.90	21.92	51.48	12.62	38.47
Joi	+DSAN	40.75	12.79	57.95	44.91	48.03	16.36	53.45	38.19	61.03	21.69	51.56	12.61	38.28