## **Few-Shot Anomaly Detection with Adversarial Loss** for Robust Feature Representations

Jae Young Lee<sup>1,3</sup>, Wonjun Lee<sup>2</sup>, Jaehyun Choi<sup>1,3</sup>, **Yongkwi Lee<sup>3</sup>**, Youngsuk Yoon<sup>3</sup>

<sup>1</sup> Korea Advanced Institute of Science and Technology (KAIST),<sup>2</sup> University of Science and Technology, <sup>3</sup> Electronics and Telecommunications Research Institute

Main contact: glory1210@etri.re.kr

# BNVC 2023

## Introduction

- ✤ Background
  - Anomaly detection methods shifted from traditional statistical to advanced deep learning-based techniques
  - in the industrial field's pre-mass production phase, limited sample

### 1. MvTec AD

|         | Shot  | Method    | Category |       |         |        |      |          |         |          |      |       |      |            |            |      |        |         |
|---------|-------|-----------|----------|-------|---------|--------|------|----------|---------|----------|------|-------|------|------------|------------|------|--------|---------|
| Metric  |       |           | Bottle   | Cable | Capsule | Carpet | Grid | Hazelnut | Leather | MetalNut | Pill | Screw | Tile | Toothbrush | Transistor | Wood | Zipper | Average |
|         |       | TDG       | 69.3     | 68.3  | 55.1    | 66.2   | 83.8 | 67.2     | 93.6    | 67.1     | 69.2 | 98.8  | 86.3 | 54.4       | 55.9       | 98.4 | 64.4   | 73.2    |
|         |       | DifferNet | 99.3     | 85.3  | 73.0    | 78.4   | 62.1 | 94.9     | 90.7    | 61.9     | 83.2 | 73.4  | 97.0 | 60.8       | 61.8       | 98.1 | 89.2   | 81.0    |
|         | = 2   | RegAD     | 99.4     | 65.1  | 67.5    | 96.5   | 84.0 | 96.0     | 99.4    | 91.4     | 81.3 | 52.5  | 94.3 | 86.6       | 86.0       | 99.2 | 86.3   | 85.7    |
|         | K =   | + Ours    | 99.8     | 65.9  | 70.2    | 96.9   | 77.0 | 96.3     | 100.0   | 94.9     | 80.7 | 66.0  | 99.4 | 83.2       | 82.6       | 99.7 | 86.6   | 86.6    |
|         |       | UniAD     | 99.9     | 60.1  | 65.7    | 100.0  | 90.6 | 90.4     | 100.0   | 63.0     | 62.5 | 75.3  | 99.4 | 91.4       | 67.9       | 98.1 | 90.6   | 83.7    |
|         |       | + Ours    | 100.0    | 58.5  | 64.7    | 99.9   | 94.3 | 91.9     | 100.0   | 64.6     | 63.0 | 73.1  | 99.2 | 91.1       | 68.4       | 97.9 | 91.1   | 83.8    |
| n       |       | TDG       | 69.6     | 70.3  | 47.6    | 68.7   | 86.2 | 71.2     | 93.2    | 69.2     | 64.7 | 98.8  | 87.2 | 57.8       | 67.7       | 98.3 | 65.3   | 74.4    |
| IA      | _     | DifferNet | 99.3     | 85.2  | 80.3    | 78.6   | 60.5 | 95.8     | 91.2    | 67.3     | 84.0 | 72.5  | 98.0 | 62.5       | 62.2       | 96.4 | 84.8   | 81.0    |
| eve     | 4     | RegAD     | 99.4     | 76.1  | 72.4    | 97.9   | 91.2 | 95.8     | 100.0   | 94.6     | 80.8 | 56.6  | 95.5 | 90.9       | 85.2       | 98.6 | 88.5   | 88.2    |
| mage Le | K     | + Ours    | 99.6     | 77.0  | 77.5    | 98.5   | 83.4 | 96.6     | 100.0   | 94.3     | 85.9 | 60.2  | 99.2 | 91.2       | 85.0       | 99.6 | 91.5   | 89.3    |
|         |       | UniAD     | 99.9     | 60.2  | 70.1    | 99.8   | 93.1 | 94.5     | 100.0   | 60.7     | 66.5 | 76.3  | 99.5 | 98.6       | 72.1       | 98.2 | 90.8   | 85.4    |
| Im      |       | + Ours    | 100.0    | 71.2  | 71.4    | 99.9   | 94.7 | 94.1     | 100.0   | 76.5     | 78.5 | 74.9  | 99.5 | 98.1       | 79.4       | 97.9 | 91.9   | 88.5    |
|         | K = 8 | TDG       | 70.3     | 74.7  | 44.7    | 78.2   | 87.6 | 82.8     | 93.5    | 68.7     | 67.9 | 99.0  | 87.4 | 57.6       | 71.5       | 98.4 | 66.3   | 76.6    |
|         |       | DifferNet | 99.4     | 87.9  | 78.6    | 78.5   | 78.5 | 97.9     | 92.2    | 67.7     | 82.1 | 75.0  | 99.6 | 60.8       | 63.3       | 99.4 | 87.3   | 83.0    |
|         |       | RegAD     | 99.8     | 80.6  | 76.3    | 98.5   | 91.5 | 96.5     | 100.0   | 98.3     | 80.6 | 63.4  | 97.4 | 98.5       | 93.4       | 99.4 | 94.0   | 91.2    |
|         |       | + Ours    | 99.9     | 85.1  | 80.6    | 96.7   | 87.3 | 96.8     | 100.0   | 94.5     | 84.4 | 70.1  | 99.9 | 98.7       | 90.9       | 99.2 | 94.7   | 91.9    |
|         |       | UniAD     | 99.9     | 65.7  | 70.4    | 100.0  | 94.8 | 94.4     | 100.0   | 76.5     | 73.1 | 76.3  | 99.6 | 96.9       | 71.0       | 98.2 | 91.5   | 87.2    |
|         |       | + Ours    | 99.9     | 59.5  | 71.5    | 97.1   | 93.2 | 95.1     | 99.0    | 76.3     | 85.5 | 92.1  | 99.5 | 97.5       | 87.6       | 93.6 | 94.5   | 89.4    |
| AUC     | K = 2 | RegAD     | 98.0     | 91.7  | 97.3    | 98.9   | 77.4 | 98.1     | 98.0    | 96.9     | 93.6 | 94.4  | 94.3 | 98.2       | 93.4       | 93.5 | 95.1   | 94.6    |
|         |       | + Ours    | 98.6     | 93.9  | 97.5    | 98.9   | 80.0 | 98.4     | 99.4    | 97.8     | 97.8 | 94.8  | 96.3 | 96.6       | 94.3       | 96.8 | 97.4   | 95.9    |
|         |       | UniAD     | 95.4     | 83.9  | 95.4    | 99.6   | 92.8 | 95.0     | 99.0    | 72.4     | 82.7 | 91.4  | 90.6 | 96.0       | 81.7       | 93.3 | 94.3   | 90.9    |
|         |       | + Ours    | 95.9     | 85.0  | 95.5    | 98.6   | 93.3 | 94.1     | 99.1    | 73.2     | 84.5 | 91.7  | 90.2 | 96.8       | 79.6       | 93.0 | 94.0   | 91.0    |
|         | _     | RegAD     | 98.4     | 92.7  | 97.6    | 98.9   | 85.7 | 98.0     | 99.1    | 97.8     | 97.4 | 95.0  | 94.9 | 98.5       | 93.8       | 94.7 | 94.0   | 95.8    |
| vel     | 4     | + Ours    | 98.6     | 96.1  | 98.3    | 98.9   | 83.0 | 98.7     | 99.5    | 96.8     | 97.8 | 96.3  | 95.7 | 97.9       | 93.8       | 96.6 | 97.6   | 96.4    |
| Le      | K :   | UniAD     | 97.4     | 91.3  | 71.4    | 98.7   | 93.7 | 95.3     | 99.1    | 81.5     | 88.7 | 92.0  | 91.1 | 97.9       | 91.5       | 93.7 | 93.7   | 91.8    |
| xel     |       | + Ours    | 97.4     | 90.7  | 71.8    | 98.6   | 93.7 | 95.3     | 99.1    | 82.8     | 90.8 | 91.8  | 90.9 | 98.1       | 92.7       | 96.9 | 94.6   | 92.3    |
| Pi      | 8     | RegAD     | 97.5     | 94.9  | 98.2    | 98.9   | 88.7 | 98.5     | 98.9    | 96.9     | 97.8 | 97.1  | 95.2 | 98.7       | 96.8       | 94.6 | 97.4   | 96.7    |
|         |       | + Ours    | 98.5     | 96.8  | 98.4    | 98.8   | 86.2 | 98.8     | 99.2    | 98.0     | 98.1 | 97.4  | 96.2 | 98.9       | 96.5       | 94.9 | 96.7   | 96.9    |
|         | K     | UniAD     | 96.6     | 88.4  | 96.8    | 98.5   | 93.2 | 95.1     | 99.0    | 76.3     | 85.5 | 92.1  | 90.9 | 97.5       | 87.6       | 93.6 | 94.5   | 92.4    |
|         |       | + Ours    | 96.5     | 88.1  | 96.8    | 96.9   | 92.7 | 95.3     | 99.1    | 77.8     | 87.1 | 96.4  | 96.8 | 97.4       | 88.3       | 96.9 | 93.8   | 93.3    |

Result

- availability often necessitates the implementation of few-shot anomaly detection technique
- Highlight of reconstruction-based methods, embedding similarity-based methods, and few-shot methods

## Objective

Introduce adversarial loss in the context of domain adaptation to enhance the performance of Few-Shot Anomaly Detection (FSAD).

## **Proposed Method**

- 1. Problem Formulation
  - Train with normal samples across n categories :  $D_{train} = \bigcup_{i=1}^{n} D_i$
  - Test with image from unknown target category  $c_t \& K$  normal samples. •

## 2. Loss Function and Training

Table 1: RegAD + Ours outperforms RegAD, showcasing improvements between 0.4 to 1.4 percentage points in the image level AUC. Similarly, UniAD combined with our method achieves up to 3.1 percentage points boost.

#### 2. DAGM2007

- Image & Pixel Level AUC

|       |        |        |        | Imag   | e-level | Pixel-level |         |        |        |        |        |        |         |
|-------|--------|--------|--------|--------|---------|-------------|---------|--------|--------|--------|--------|--------|---------|
| Shot  | Method | Class1 | Class2 | Class3 | Class4  | Class5      | Average | Class1 | Class2 | Class3 | Class4 | Class5 | Average |
| K = 2 | RegAD  | 56.1   | 67.6   | 76.8   | 93.5    | 73.7        | 73.5    | 73.0   | 89.7   | 90.0   | 97.7   | 82.1   | 86.5    |
|       | + Ours | 64.8   | 60.6   | 83.4   | 96.8    | 76.6        | 75.2    | 78.6   | 79.5   | 89.5   | 97.3   | 78.3   | 84.7    |
|       | UniAD  | 58.3   | 98.1   | 74.2   | 64.5    | 69.7        | 72.9    | 84.1   | 99.7   | 89.1   | 91.2   | 82.3   | 89.3    |
|       | + Ours | 60.0   | 98.0   | 74.8   | 66.4    | 70.6        | 74.0    | 84.1   | 99.8   | 88.9   | 91.9   | 82.9   | 89.5    |
| K = 4 | RegAD  | 89.8   | 73.1   | 76.0   | 80.5    | 64.8        | 76.9    | 88.5   | 90.2   | 88.9   | 95.5   | 76.6   | 87.9    |
|       | + Ours | 90.0   | 78.6   | 81.3   | 97.8    | 78.1        | 85.1    | 88.0   | 95.1   | 89.4   | 96.4   | 82.8   | 90.3    |
|       | UniAD  | 59.4   | 98.1   | 74.1   | 78.6    | 70.4        | 76.1    | 85.0   | 99.8   | 88.8   | 93.7   | 82.3   | 89.9    |
|       | + Ours | 59.1   | 98.1   | 75.8   | 79.4    | 70.9        | 76.7    | 85.1   | 99.8   | 89.6   | 94.0   | 82.5   | 90.2    |
| K = 8 | RegAD  | 71.5   | 77.8   | 84.6   | 90.0    | 69.0        | 78.6    | 71.0   | 93.4   | 91.0   | 97.8   | 80.4   | 86.7    |
|       | + Ours | 73.1   | 96.9   | 84.8   | 97.7    | 73.9        | 85.3    | 87.1   | 99.2   | 89.1   | 98.2   | 82.5   | 91.2    |
|       | UniAD  | 59.1   | 98.1   | 75.7   | 88.3    | 71.0        | 78.4    | 85.1   | 99.8   | 89.9   | 95.5   | 82.7   | 90.6    |
|       | + Ours | 59.3   | 98.0   | 76.1   | 93.2    | 72.2        | 79.8    | 85.3   | 99.8   | 90.0   | 96.2   | 83.1   | 90.9    |

- Main Model *M* : Potential models include RegAD, UniAD.
- Discriminator D : Auxiliary network trained with M using adversarial loss.

## 3. Key Formulations

- Discriminator Training Loss :  $\mathcal{L}_{DT} = \mathcal{L}_D(f_0, 0) + \mathcal{L}_D(f_1, 1)$
- Main Model Training Loss :  $\mathcal{L}_{MT} = \mathcal{L}_D(f_0, 1)$

## 4. Integration with RegAD & UniAD

- RegAD lacksquare
  - Siamese network with two branches
  - Branches process images  $I_0$  and  $I_1$  from same category
  - Feature  $I_0$  and  $I_1$  extracted from predictor



Table 2: Results on the DAGM2007 dataset reveal our proposed method generally enhances RegAD and UniAD performance, despite occasional exceptions in certain classes.



Comparison of RegAD / UniAD vs. **RegAD + Ours / UniAD + Ours** varied results across categories like grid, metal\_nut, and screw.







#### UniAD $\bullet$

- Comprises encoder & layer-wise query decoder.
- Input-output pairs of the layer-wise query decoder used as features  $f_0$  and  $f_1$



- UniAD + Ours broadens feature space, enhancing separation of sample types.

- RegAD + Ours offers better feature clustering, reducing misclassifications.

## Conclusion

- Our method proposed a novel FSAD method incorporating adversarial loss for enhanced generalization.
- We demonstrated overall performance improvement on MVTec AD and DAGM  $\bullet$ datasets.

## Acknowledgement

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2022-0-00866, Development of cyber-physical manufacturing base technology that supports high-fidelity and distributed simulation for large-scalability.