Embedding Human Knowledge into Spatio-Temproal Attention Branch Network in Video Recognition via Temporal Attention ST-ABN

Saki Noguchi, Yuzhi Shi, Tsubasa Hirakawa, Takayoshi Yamashita, Hironobu Fujiyoshi

Chubu University

Background and Motivation

- Video recognition by deep learning
 - A task for identifying actions performed in a video using multiple frame images
 - Recognize action using both spatial and temporal information

Problem : The basis of the model's decisions is unclear

Embedding human knowledge into the ST-ABN

Step 1. Collecting temporal attentions

- -Train the ST-ABN and collect temporal attentions
 - Evaluate with training samples and select misclassified videos

Approach

• ST-ABN

- Visual explanation considering spatial and temporal information
- Embedding human knowledge into the ST-ABN
 - Improvement of recognition accuracy and visual explainability

Spatio-Temporal Attention Branch Network (ST-ABN)

- A network that takes into account important spatio-temporal information
 - -ST attention branch : provide visual explanation for spatial and temporal attentions
 - : Visualize the gazing area for each frame Spatial attentions
 - Temporal attentions : Visualize the importance of each frame
 - -Attention mechanism : Weight two attentions on the feature maps
- We can embed human knowledge via both spatial and temporal attentions

Attention mechanism

Step 2. Temporal attentions modification

- Manually modify the temporal attentions collected in step 1
- -Classify frames into three levels and edit temporal attentions

Step 3. Fine-tune the ST-ABN

- Fine-tune the branches of ST-ABN with modified temporal attentions
- -We add a loss function L_{temp} to that of the ST-ABN
 - *L_{temp}* : Mean squared error with modified temporal attentions
- The ST-ABN optimizes its ST attention and perception branches.

$L_{temp}(\mathbf{x}_i) = \gamma_t \frac{1}{n} \sum_{i=1}^{n} (\{M'_t(\mathbf{x}_i)\}_j - \{M_t(\mathbf{x}_i)\}_j)^2$ **Temporal attentions** Temporal attentions $M_t(x_i)$ $L_{temp}(\mathbf{X}_i)$ Modified temporal attentions $M'_{t}(\mathbf{x}_{i})$ Spatial attentions $M_{s}(\mathbf{x}_{i})$ ST attention branch \dots $L_{att}(\mathbf{x}_i)$ Feature extractor Input video x, Feature maps $L_{per}(\mathbf{x}_i)$ ncat Perception branch $L(\mathbf{x}_i) = L_{att}(\mathbf{x}_i) + L_{per}(\mathbf{x}_i) + L_{temp}(\mathbf{x}_i)$

Experiments

- Experiment Details
 - -Dataset : Something-Something v.2

 - Modified temporal attentions : 2,396 training samples in 8 action classes (1.5% of the total)
- Comparison with Embedding Human Knowledge (Backbone network : 3D ResNet-50)

	Modified	Other	ΛΠ
Method	classes	classes	All
ST-ABN	20.5	59.8	58.6

Comparison with Conventional Models

Method	Frames	Top-1 Acc.	Top-5 Acc.
3D ResNet-50	32	51.4	80.1
3D ResNet-50 + ST-ABN	32	58.6	85.5
3D ResNet-50	32 × 2	63.8	89.2
3D ResNet-50 + ST-ABN	32×2	64.1	89.6
3D ResNet-101	32	57.7	82.8
3D ResNet-101 + ST-ABN	32	58.0	83.2
3D ResNet-101	32 × 2	65.3	90.1
3D ResNet-101 + ST-ABN	32 × 2	65.8	90.4

20.0 **JJJ** ST-ABN + 26.3 Human Knowledge

Improved accuracy not only modified classes but also other

Improved accuracy by introducing the ST-ABN into the backbone network

Embedding human knowledge into the ST-ABN obtain better attentions