Understanding Gaussian Attention Bias of Vision Transformers

Using Effective Receptive Fields
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Abstract

Vision transformers (ViTs) that model an image as a
sequence of partitioned patches have shown notable
performance in diverse vision tasks. Because partitioning
patches eliminates the image structure, to reflect the order
of patches, ViTs utilize an explicit component called
positional embedding. However, we claim that the use of
positional embedding does not simply guarantee the order-
awareness of ViT. To support this claim, we analyze the
actual behavior of ViTs using an effective receptive field. We
demonstrate that during training, ViT acquires an
understanding of patch order from the positional embedding
that is trained to be a specific pattern. Based on this
observation, we propose explicitly adding a Gaussian
attention bias that guides the positional embedding to have
the corresponding pattern from the beginning of training. We
evaluated the influence of Gaussian attention bias on the
performance of ViTs in several image classification, object
detection, and semantic segmentation experiments. The
results showed that proposed method not only facilitates
ViTs to understand images but also boosts their

performance on various datasets, including ImageNet,
COCO 2017, and ADE20K.

Introduction

* Positional Embedding

- Self-attention cannot understand the order of input
patches.

- ViT uses separate positional embedding, such as APE or
RPE, to reflect the order of patches.
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Figure Reference Dosovitskiy et al. (ICLR 2021)

* Our Contribution

- Claim that the use of positional embedding does not
simply guarantee the order-awareness of ViT.

- Analyze the actual behavior of ViTs using an effective
receptive field.

- Propose explicitly adding a Gaussian attention bias that
guides the positional embedding.

- Evaluate the influence of Gaussian attention bias on the
performance of ViTs.

Analysis

We demonstrate that during training, ViT acquires an

understanding of patch order from the positional embedding

that is trained to be a specific pattern.

(c) ViIT-M/16 (R)

Figure 4: ERFs of ViTs, where (R) indicates the model with RPE. The second row illustrates
ERFs when the APE or RPE is re-initialized to random parameters. Note that the 4-shape is
lost in the second row.

Figure 5: RPE of ViT-B/16 (R) for each patch index. The first row is obtained from the
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pretrained model, whereas the second row is obtained from the untrained model.
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Figure 6: RPE corresponding to the center was extracted for each layer of ViT-B/16 (R).

Proposed Method

*In light of the observation that learned RPE fits suitably
with a 2D Gaussian, we propose injecting Gaussian
attention bias into RPE:

QK/
VD

Attention; (Ql, K[,Vl) = softmax ( + Brel,l + BGaussian,l) V.

* Build Gaussian attention bias by reversing the process of
extracting RPE.
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Figure 7: Illustration on how we obtain Gaussian attention bias.

* Generate a 2D Gaussian table using two learnable
parameters:
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Design Choice

* Design as additive bias.

- It can be seamlessly plugged into any type of RPE.
- €.9. RelPosBias or RelPosMlIp

* Use learnable parameters.
- Hyperparameter-free!

Experiments

* We consistently observed improved performance after
applying Gaussian Attention Bias.

* Image Classification

- ImageNet-1K
Dataset Model RPE w/o GAB RPE w/ GAB Difference
ViT-S/16 (R) 80.567 80.724 +0.157
ImageNet-1K  ViT-M/16 (R) 81.224 81.249 +0.025
ViT-B/16 (R) 81.381 81.484 +0.103

Table 2: Top-1 accuracy on the ImageNet-1K dataset. All the accuracies in this paper are

expressed in percentage units. “GAB” indicates Gaussian attention bias.

* Image Classification
- Oxford-IlIT Pet, Caltech-101, Stanford Cars, Stanford

Dogs
Dataset Model RPE w/o GAB RPE w/ GAB Difference
VIiT-S/16 (R) 01.486 92.780 +1.294
Oxford-IIIT Pet  VIT-M/16 (R) 02.810 92.960 +0.150
ViT-B/16 (R) 03.381 03.743 +0.362
VIiT-S/16 (R) 88.403 90.202 +1.799
Caltech-101 ViT-M/16 (R) 89.132 89.983 +0.851
ViT-B/16 (R) 89.254 89.570 +0.316
VIiT-S/16 (R) 80.126 83.079 +2.953
Stanford Cars ViT-M/16 (R) 80.731 83.890 +3.159
ViT-B/16 (R) 80.154 82.612 +2.458
ViT-S/16 (R) 81.535 82.507 +0.972
Stanford Dogs ViT-M/16 (R) 85.088 85.714 +0.626
ViT-B/16 (R) 89.256 90.185 +0.929

Table 3: Test accuracy with and without Gaussian attention bias on other datasets.

* Object Detection and Semantic Segmentation
- COCO 2017, ADE20K
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- Allow layer-wise freedom.

* Allow the learnability of the original RPE.
- Benefit from enriched expression in self-attention.

COCO
APbox APmask

48.12 43.03
48.23 43.13
+0.11  +0.10

ADE20K
mloU aAcc

46.16 81.82
46.41 82.09
+0.25 +0.27

Backbone RPE Method
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0.731
0.798
0.831
0.867
0.753
0.730
0.796
0.805
0.771
0.786
0.231
0.019

6.837
4.704
6.185
4.757
6.798
5.624
5.872
4.865
5.668
5.111
8.709
690.530

7.063
4.538
6.392
5.020
5.310
4.631
4.848
5.473
5.681
6.125
2727743
181.928

0.893
0.728
0.824
0.838
0.795
0.694
0.844
0.798
0.729
0.878
0.359
0.002

4.219
6.257
4715
5.250
5.597
8.054
5.509
5.715
5.472
4.430
5.824
396.639

208.676
415.174

4.113
5.679
5.039
5.355
4.920
5.540
4.660
5.010
6.538
5.348

0.914
0.573
0.870
0.813
0.853
0.817
0.877
0.825
0.873
0.896
0.012
0.004

4.553
6.672
4.649
4.901
5.055
5421
6.895
5.640
5.328
5.342
21.137
579.639

4.394
6.719
4.849
5.404
4.807
4.276
5.020
4.006
4914
6.132
702.646
332.651

Table 1: Results of fitting RPEs to a 2D Gaussian.

* Use a single Gaussian table.
- Sliced Gaussians are shifted versions of each other.
- Inspired by the use of relative coordinates.

* Do not use constant term in Gaussian.
- Softmax is invariant to constant translation.

* Share it across multiple heads of SA.
- But we observed a negligible effect.
- Validated from the ablation study.

* Do not apply weight decay to the two parameters.
- In PyTorch, explicitly specify not to apply weight decay.

* Ablation Study

Table 4: Experimental results in terms of object detection and semantic segmentation.

- Comparison of head-shared and head-wise versions.

Dataset

RPE w/o GAB
Baseline

Val

Test

Val

RPE w/ GAB
Head-shared

Test

Head-wise

Val

Test

Oxford-IIIT Pet
Caltech-101
Stanford Cars
Stanford Dogs

93.682
89.959
81.294
82.7717

91.486
88.403
80.126
81.535

93.923
91.296
84.205
83.188

92.780
90.202
83.079
82.507

93.773
91.126
84.411
83.501

92.509
90.591
82.928
81.438

Table 4: Comparison of head-shared and head-wise Gaussian attention bias. ViT-S/16 (R)

was used for these experiments.
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