
KIM ET AL.: GAUSSIAN ATTENTION BIAS 1

Understanding Gaussian Attention Bias of
Vision Transformers Using Effective
Receptive Fields (Supplementary Material)

Bum Jun Kim
kmbmjn@postech.ac.kr

Hyeyeon Choi
hyeyeon@postech.ac.kr

Hyeonah Jang
hajang@postech.ac.kr

Sang Woo Kim
swkim@postech.ac.kr

Department of Electrical Engineering
POSTECH
Pohang, South Korea

A More Experimental Results

(a) XCiT-S12/8 (b) XCiT-L24/8 (c) XCiT-S12/16 (d) XCiT-L24/16

Figure 1: ERFs of XCiT with different models and patch sizes.

(a) BEiT-B/16, 3842 (b) BEiT-L/16, 2242 (c) BEiT-L/16, 3842 (d) BEiT-L/16, 5122

Figure 2: ERFs of BEiT with different model sizes and resolution.

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 KIM ET AL.: GAUSSIAN ATTENTION BIAS

(a) Swin-L, 2242 (b) Swin-L, 3842 (c) SwinV2-S, W8 (d) SwinV2-B, W8

Figure 3: ERFs of Swin and SwinV2. Exceptionally, SwinV2 uses 2562 resolution.

(a) EfficientNet-B0 (b) EfficientNet-B7 (c) DenseNet-121 (d) DenseNet-201

Figure 4: ERFs of EfficientNet and DenseNet. Exceptionally, EfficientNet-B7 uses 6002

resolution.

Further Analysis of ERFs Figure 1 shows the ERFs of XCiTs. Compared with the ERFs
of ViT and DeiT, the ERF of XCiT exhibited a smooth shape resembling a 2D Gaussian.
Although BEiT exhibited an almost identical architecture to ViT and DeiT, their ERFs high-
lighted the edge of the targeted patch (Figure 2).1 The ERFs of Swin and SwinV2 were
consistently wider and not restricted to the targeted patch (Figure 3). We further obtained
the ERFs for other CNNs, including EfficientNets and DenseNets (Figure 4). Note that a
larger resolution may mean a relatively smaller portion of ERF with respect to the image.
This phenomenon occurs owing to scale mismatch: ViTs and CNNs perceive images as data
in pixel units, resulting in ERFs in pixel units, whereas objects in an image can be repre-
sented at arbitrary resolutions, and thus their proportion with respect to the image matters
more. Thus, a pixel-portion mismatch may exist.
Size of ERF Table 1 summarizes the size of the ERFs for ViTs and ResNets. Compared
with the ResNets’ ERFs that fitted suitably the Gaussian with R2 close to 0.9, the ERFs of
ViTs did not. XCiTs demonstrated R2 > 0.9, nonetheless yielding small σ̂X and σ̂Y values
around 11, which were smaller than those of ResNets. Note that a direct comparison of
the ERF size between ViTs and ResNets would be unfair owing to their different effective
strides. For example, XCiT with a patch size of 16 produces a 14× 14 target feature from
a 224× 224 image and has an effective stride of 16, whereas ResNet-50 has an effective
stride of 32 up to the target feature, resulting in a larger ERF. Although ERF represents the
behavior of ViTs, its size rarely relates to its classification accuracy. For example, compared
with DeiT-B/16, DeiT-S/16 showed a wider ERF but lower top-1 and top-5 accuracies. A
larger model tended to yield a wider ERF and higher classification accuracy; thus, there
was a correlation but not a causal relationship. This observation is contrary to the common
belief that a larger receptive field is advantageous to performance gains. Although the size of

1For BEiT, we utilized a modified version using LayerScale and RPE, as described in their Appendix.



KIM ET AL.: GAUSSIAN ATTENTION BIAS 3

the receptive field has been widely emphasized in previous literature, we do not encourage
comparing the size of the ERFs for ViTs to understand the superiority of their performance.
This limitation also arises from the fact that the shape of the ERF is a pseudo-2D Gaussian
that does not fit well with a 2D Gaussian.

Model R2 σ̂X σ̂Y Top-1 (%) Top-5 (%)

ViT-S/16 0.819 6.925 6.459 81.388 96.136
ViT-B/16 0.032 159.531 2068.001 84.528 97.294
ViT-L/16 0.039 136.167 2191.316 85.840 97.818
ViT-S/16 (R) 0.784 5.381 5.403 81.462 95.822
ViT-M/16 (R) 0.789 6.980 6.190 82.460 96.084
ViT-B/16 (R) 0.782 6.423 7.016 82.496 96.140

DeiT-S/16 0.813 5.402 5.608 79.852 95.044
DeiT-B/16 0.820 5.183 5.186 81.990 95.736
DeiT III-S/16 0.802 6.212 6.000 81.368 95.460
DeiT III-B/16 0.858 6.103 6.179 83.784 96.588
DeiT III-L/16 0.849 6.519 6.508 84.774 97.038
BEiT-B/16 0.694 12.806 12.166 85.210 97.658
BEiT-L-16 0.721 15.189 14.137 87.476 98.304

CaiT-XXS-24 0.759 5.363 5.369 78.380 94.316
CaiT-S-24 0.780 7.124 6.676 83.452 96.572
XCiT-S24/16 0.908 11.755 11.607 82.580 96.010
XCiT-M24/16 0.915 11.228 11.213 82.640 95.982
XCiT-L24/16 0.921 11.252 11.178 82.896 95.886

Swin-S 0.203 97.528 96.528 83.208 96.320
Swin-B 0.285 128.219 119.284 85.266 97.564
Swin-L 0.333 102.800 97.167 86.316 97.902
SwinV2-S, W8, 2562 0.423 62.451 62.287 83.852 96.644
SwinV2-S, W16, 2562 0.224 81.573 77.192 84.220 96.864
SwinV2-B, W8, 2562 0.531 50.058 47.541 84.252 96.926
SwinV2-B, W16, 2562 0.170 88.263 84.476 84.604 97.088

ResNet-18 0.905 76.623 78.478 69.760 89.070
ResNet-50 0.948 59.849 60.882 80.374 94.602
ResNet-101 0.924 70.993 71.728 81.928 95.770
ResNet-152 0.893 70.048 71.815 82.824 96.124
WideResNet-101-2 0.949 56.633 63.792 78.842 94.284
ResNeXt-101-32x8d 0.922 65.591 70.820 79.316 94.520

Table 1: Results of fitting ERF to 2D Gaussian. All models use 2242 resolution unless
specified otherwise.



4 KIM ET AL.: GAUSSIAN ATTENTION BIAS

B Hyperparameters and Technical Details on
Experiments

ImageNet-1K The ImageNet-1K dataset contains 1.28M images for 1,000 classes. For
the image classification experiments with ImageNet-1K, we used the pytorch-image-models
library also known as timm. We referred to the hyperparameter recipe described in the
official documentation and the recipe of DeiT. For training, AdamW optimizer with learning
rate 5× 10−4, epochs 400, warm-up learning rate 10−6, cosine annealing schedule, weight
decay 0.05, label smoothing 0.1, random erasing with probability 0.25, RandAugment of
magnitude 9 and noise-std 0.5 with increased severity (rand-m9-mstd0.5-inc1), Mixup 0.2,
Cutmix 1.0, stochastic depth 0.1, mini-batch size 288 per GPU, Exponential Moving Average
of model weights with decay factor 0.99996, and image resolution 2242 were used. An
average of three runs was reported for each result. The training was conducted on an 8×A100
GPU machine.
Other Datasets The Oxford-IIIT Pet dataset contains 7K pet images from 37 classes; the
Caltech-101 dataset includes 9K object images from 101 classes with a background cate-
gory; the Stanford Cars dataset includes 16K car images from 196 classes; the Stanford
Dogs dataset includes 20K dog images from 120 classes. These datasets are available on
their official websites. Each dataset was split into training, validation, and test sets at a
ratio of 70:15:15. All the experiments were conducted at a resolution of 2242 using stan-
dard data augmentation, including random resized cropping to 256 pixels, random rotations
within 15 degrees, color jitter with a factor of 0.4, random horizontal flip with a probabil-
ity of 0.5, center cropping with 224-pixel windows, and mean-std normalization based on
ImageNet statistics. We used ImageNet-1K pretrained weights. As our goal was to investi-
gate whether Gaussian attention bias helps RPE to obtain a spatial understanding of images,
we re-initialized the RPE to random parameters and injected Gaussian attention bias. For
training, stochastic gradient descent with a momentum of 0.9, learning rate of 0.01, cosine
annealing schedule with 200 iterations, weight decay of 0.0005, and mini-batch size of 128
were used. The model with the highest validation accuracy was obtained for 200 training
epochs. These hyperparameters were obtained based on the accuracy of the validation set.
An average of three runs was reported for each result. The training was conducted on a single
RTX 3090 GPU machine.
Object Detection on the COCO Dataset For training and testing, we used the COCO
2017 dataset comprising 118K training images, 5K validation images, and 41K test im-
ages. We used Swin-S 2242 pretrained on ImageNet-1K as the backbone of Mask R-CNN
to conduct object detection and instance segmentation. For training, the 3× learning rate
schedule, multi-scale crop, FP16 training, data augmentation rules of DETR and Sparse R-
CNN, AdamW with learning rate 10−4, and weight decay 0.05 were used. We used the
MMDetection library for this experiment. The training was conducted on an 8×A100 GPU
machine.
Semantic Segmentation on the ADE20K Dataset A pixel-wise segmentation model was
trained using the ADE20K dataset containing more than 20K images and their corresponding
semantic labels. We used Swin-S 2242 pretrained on ImageNet-1K as the backbone of UPer-
Net. For training, the 160k learning rate schedule, 5122 pixel crop for images and labels,
mini-batch size of 2 per GPU, AdamW with learning rate 6×10−5 with polynomial decay,
and weight decay 0.01 were used. We used the MMSegmentation library for this experiment.
The training was conducted on an 8×A100 GPU machine.



KIM ET AL.: GAUSSIAN ATTENTION BIAS 5

Technical Details on ERF For the implementation of ERF, we should be aware that the
class token corresponds to the zeroth index that shifts the targeted patch index. Further-
more, to correctly apply ReLU to each image, we recommend using a mini-batch size of
1. Note that ERF is affected by the weight of the model; for all experiments, ImageNet-
1K pretrained ViTs were used. Furthermore, to obtain valid ERFs, we need to ensure that
the correct options are selected for each pretrained model. For example, certain models use
bilinear interpolation to resize the input image, whereas other models use bicubic interpo-
lation. Certain models do not use ImageNet statistics but instead use other values such as
zeros, ones, or halves for mean-std normalization. These options affect the performance of
each model. We followed the correct options described in the official documentation and
source code.
Details on ViTs Table 2 summarizes each ViT with their resolution H ×W , patch size P,
number of blocks L, hidden size D, and number of heads. Note that the base model is larger
than the medium model.

Model Model Size H ×W P L D # Heads

ViT-S/16, 2242 Small 2242 16 12 384 6
ViT-M/16, 2242 Medium 2242 16 12 512 8
ViT-B/16, 2242 Base 2242 16 12 768 12
ViT-L/16, 2242 Large 2242 16 24 1024 16

Table 2: Details on ViTs.

Library Version We used the following libraries in our experiments. However, our results
are not limited to the specific version of the software:
- Ubuntu 18.04, CUDA 11.3, cuDNN 8.3.2, Python 3.9.12, PyTorch 1.12.0, timm 0.6.7,
LMfit 1.1.0, NumPy 1.23.5, and MMCV 1.7.1.

C More Details on Gaussian Attention Bias
Initialization of Gaussian Attention Bias Although Al and σl were set as learnable pa-
rameters like weights in a neural network, we should initialize them as well. The default
initializations we recommend are Al = 2 and σl = 5, which were used for all experiments.
Furthermore, we verified the learned values of Al and σl for each experiment. Table 3 sum-
marizes their average across layers. Note that Al and σl remained close to the default values,
implying that the default initialization functioned as valid values. In addition, depending on
the properties of the dataset or the required size of ERF, Al and σl can become slightly higher
or lower, as observed in experiments on the Stanford Cars dataset.
On Weight Decay We set the two parameters Al and σl as learnable parameters; nonethe-
less, they should not be subjected to weight decay because they need to be trained to spe-
cific values. Note that for certain libraries such as PyTorch, weight decay is applied to all
learnable parameters by default. Thus, we should explicitly apply weight decay to the two
parameters with a coefficient of zero. This practice has been commonly deployed in PyTorch
when modules such as PReLU employ learnable parameters that should not be subjected to
weight decay. This trick was adopted in all experiments. A simple implementation example
is provided below.



6 KIM ET AL.: GAUSSIAN ATTENTION BIAS

Dataset Model E[A∗
l ] E[σ∗

l ]

Oxford-IIIT Pet
ViT-S/16 (R) 1.987 4.996
ViT-M/16 (R) 1.991 4.997
ViT-B/16 (R) 1.940 5.007

Caltech-101
ViT-S/16 (R) 1.946 5.012
ViT-M/16 (R) 1.956 5.011
ViT-B/16 (R) 1.918 5.014

Stanford Cars
ViT-S/16 (R) 2.334 4.839
ViT-M/16 (R) 2.316 4.845
ViT-B/16 (R) 2.262 4.846

Stanford Dogs
ViT-S/16 (R) 1.949 4.979
ViT-M/16 (R) 1.937 4.988
ViT-B/16 (R) 1.895 5.006

Table 3: Average values of learned A∗
l and σ∗

l over layers.

1 # ...
2 self.sigma_param = nn.Parameter(torch.Tensor([hp_sigma_param]))
3 self.amplitude_param = nn.Parameter(torch.Tensor([hp_amplitude_param]))
4

5 # ...
6 param_original = [param for name, param in model_ft.named_parameters() if "

param" not in name]
7 param_GAB = [param for name, param in model_ft.named_parameters() if "param"

in name]
8

9 # ...
10 optimizer_ft = optim.SGD([
11 {"params": param_original, "weight_decay": args.hp_wd},
12 {"params": param_GAB, "weight_decay": 0.0},
13 ],lr=args.hp_lr, momentum=0.9)
14

15 # ...

Listing 1: PyTorch example of applying weight decay on the model with Gaussian attention
bias.

Ablation Study In the main text, we mentioned that we chose the head-shared Gaussian
attention bias rather than the head-wise version. This choice arises because SA is imple-
mented in a multi-head fashion. Table 4 summarizes the experimental results comparing
head-shared and head-wise Gaussian attention bias. The performance difference was negli-
gible; therefore, the choice of either is inconsequential. However, in general, head-shared
implementation tends to yield slightly higher accuracy. Nevertheless, we observed that the
head-wise Gaussian attention bias was at least better than the baseline accuracy obtained
from RPE without Gaussian attention bias. This observation highlights that, although head-
shared implementation provides more performance gain, head-wise Gaussian attention bias
also provides a performance gain as it provides spatial understanding of images.



KIM ET AL.: GAUSSIAN ATTENTION BIAS 7

RPE w/o GAB RPE w/ GAB
Baseline Head-shared Head-wise

Dataset Val Test Val Test Val Test

Oxford-IIIT Pet 93.682 91.486 93.923 92.780 93.773 92.509
Caltech-101 89.959 88.403 91.296 90.202 91.126 90.591
Stanford Cars 81.294 80.126 84.205 83.079 84.411 82.928
Stanford Dogs 82.777 81.535 83.188 82.507 83.501 81.438

Table 4: Comparison of head-shared and head-wise Gaussian attention bias. ViT-S/16 (R)
was used for these experiments.

Computation Analysis In terms of computation, because learned bias terms Brel,l+BGaussian,l
can be precomputed, using our Gaussian attention bias does not require additional computa-
tion time during inference compared to using Brel,l . In terms of the number of parameters,
the use of Gaussian attention bias requires two additional parameters per layer, whose total
amounts to only 24 or 48, which is minor for ViTs.

(a) n = 0 (b) n = 1 (c) n = 2 (d) n = 48

Figure 5: Learned RelPosBias of Swin-S for each patch index.

On RelPosBias The original Swin transformer uses RelPosBias that extracts RPE from a
learnable table, whereas SwinV2 uses RelPosMlp, whose MLP yields RPE for each relative
coordinate. Note that when RelPosBias is used, there is no guarantee that each value will
be continuous with respect to the relative coordinate. However, owing to the piecewise
linearity of MLP, RelPosMlp is expected to yield an RPE that is somewhat continuous with
the relative coordinates. Because of this difference, the 2D Gaussian pattern is more likely to
be observed in RelPosMlp. Figure 5 represents the learned RelPosBias of Swin-S. Note that
the learned RelPosBias resembles a 2D Gaussian but exhibits a hole in the targeted patch. We
conjecture that the hole appears because its value is irrelevant in discriminating between near
and far patches, and the RelPosBias is not continuous with respect to the relative coordinate.
In addition, the skip connection renders it easier to propagate the value of the targeted patch.
Note that although RelPosBias and RelPosMlp produce RPE differently, the resulting RPE is
added as attention bias in the same manner. Furthermore, the RPE in the targeted patch shows
a lower value in RelPosBias and a higher value in RelPosMlp, and both work effectively
with ViTs. Thus, we conjecture that the hole in RelPosBias is not necessary and that it can
be replaced with another higher value. Indeed, in our main text, we confirm that Gaussian
attention bias is effective when incorporated with Swin-S that uses RelPosBias.


