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Abstract
We provide details of the datasets and evaluation protocol used in this work in Sec.1.

Implementations details such as hyperparameters (e.g. learning rate and temperature
parameters) and weighting parameters are given in Sec.2. Given the trained model, the
details of inference step is described in Sec.2.2. In Sec.2.3, the pseudo code of the
propose method is given. Additionally, we show the PR curves and P@1000 curves on
NUS-WIDE and FLICKR25K for the completeness of evaluations. Lastly, we report the
full results and ablations.

1 Dataset and Evaluation Protocol
CIFAR-10 consists of 60,000 images of 10 class, where each class has 5,000 images for
training and 1,000 images for testing. We use 1,000 images per class as the query set, while
the remaining images are used as the training set and the retrieval database.
NUS-WIDE is a multi-label large-scale dataset with around 270,000 images of 81 cate-
gories. We select images of the 21 most frequent categories for evaluation, where 100 im-
ages per categories are selected to form 21,000 images as the query set while the remaining
images form the training set and the retrieval database.
FLICKR25K is a relatively small dataset with 25,000 images of 24 categories. We randomly
select 2,000 images as the query set while the remaining images are used as the training
set and the retrieval database. On the multi-label NUS-WIDE and FLICKR25K, if a query
image and a database image share at least one label, then they are defined as the true match [9,
14].

2 Implementation Details
We implement our approach with Python and PyTorch. Following [9], we use the modified
ResNet-18 [8, 9] as the backbone (feature extractor) for CIFAR-10 where the first convolu-
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tional layer is modified with small kernel size and stride to adapt to the small 32×32 input im-
age size, and use standard ResNet-50 [8] as the backbone for NUS-WIDE and FLICKR25K.
We use strong random augmentation [2], including random cropping, horizontal flipping,
color jitter, gray scaling and Gaussian blur, to generate augmented samples.

The number of codewords in each codebook is fixed to K=24, the dimension of each
codeword is fixed to D/M=16 and the number of codebook is varying as M={4,8,16}, so
we can generate {M·log2K}={16,32,64} bits codes for image retrieval. We use Adam [11]
as the optimizer with the initial learning rate of 5e−4 for CIFAR-10 and 2e−4 for NUS-
WIDE and FLICKR25K, and set the weight decay of 1e−5. We warm up the learning rate
with 10 epochs and decay it with the cosine decay schedule [17] without restart. On CIFAR-
10, we set the batch size NB=256 with the original input image size of 32×32, while on
NUS-WIDE and FLICKR25K, NB=128 with the input of 224×224.

In part consistent quantization, we set λpn=0.1, λcd=0.2, Nk=20, τpn=0.5. In global
consistent quantization, we set τsq=0.2 and τic=0.5 following [9], and use λcc=0.4 and
τcc=0.2. In fully unsupervised image retrieval, we train our model from scratch without
using ImageNet pre-trained weights. Despite our approach is devised for deep fully unsu-
pervised image retrieval, it is compatible with the deep pre-trained unsupervised setting, so
we also report SSCQ-p that employs an ImageNet pre-trained VGG16 model as the back-
bone.

2.1 Details at Training Stage

During training, we add two loss terms, namely codewords diversity regularization and in-
stance embedding contrastive loss. The former one is to stabilize the training process, while
the latter one mimisc the instance quantization contrastive loss.

Codewords Diversity Regularization. Simply applying (??) may result in reduced di-
versity of the subspace features. To encourage diverse codeword distribution, we compute
the similarity between sub-embedding representations and codewords in each codebook and
encourage the mean probability distribution to be diverse, as:

Lcd =
1
M

M

∑
m=1

K

∑
k=1

p̂m,k·log(p̂m,k), (1)

where p̂m,k=
1

2Nb
∑

2Nb
i=1

exp(s( fi,m,cm,k))

∑
K
t=1 exp(s( fi,m,cm,t ))

is the mean output probability over all samples in a
mini-batch. Note that similar codewords diversity regularization has been used in previous
quantization method [12], but here Lcd in our approach is an auxiliary term based on en-
tropy maximization [13, 15] for unsupervised part consistent quantization and is not directly
computed using soft quantization code.

Instance Embedding Contrastive Loss. Previous contrastive quantization based meth-
ods [9, 21] use contrastive learning for quantized representations. However, it is inevitable
that quantized representations lose useful embedding representation information during the
quantization process. This leads to sub-optimal performance when the feature extractor is
trainable, as we found in this work. Cross-quantized learning is proposed in SPQ [9] to
mitigating the effect. Unlike SPQ, we propose a much simpler alternative to maximizing
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the similarity between embeddings and quantized representation. Similar to Licz, we add an
instance contrastive loss Lic f for the embedding representations f , as:

Lic f =−log
exp(s( f, f+)/τic)

∑
2Nb
j=1 1[ f j ̸= f ] exp(s( f, f j)/τic)

. (2)

With Eq.(2), we can simultaneously optimize the quantized representations and the embed-
ding representations.

2.2 Details at Inference Stage

Once the model is trained, it could be deployed for inference purpose. In inference, fol-
lowing the previous work [9, 21], we use hard quantization to generate the (M·log2K)-bits
code for each sample in the database by finding the most similar codeword {cm,k}K

k=1 from
each codebook {Cm}M

m=1 for each sub-embedding representation. Then, we use asymmet-
ric distance [10] to measure the distance between each query sample and database samples.
Specifically, given a query image, we extract its embedding representation and divide it into
M sub-embedding representations. Next, we compute the Euclidean distance between each
sub-embedding representation and all codewords in all codebooks to set up a query-specific
look-up table. Finally, we can approximately calculate the distance between the query sam-
ple and each database sample by using the code to get the sub-vector distance from the
query-specific look-up table and then summing up.

2.3 Summary of the Proposed Method

We summarize the training process of the proposed Self-Supervised Consistent Quantization
in Algorithm 1.

3 Complete Evaluation Results

Complete evaluation results are shown in Table 1 on CIFAR-10, in Table 2 on NUS-WIDE,
in Table 3 on FLICKR25K.

In Fig. 1, we report PR curves and P@1000 curves. It can be observed that our SSCQ
(blue curve) consistently outperforms SPQ (green curve) under the fully unsupervised set-
ting, while our SSCQ-p (orange curve) performs competitively against the state-of-the-art
pre-trained methods. This further demonstrate that our approach is capable of learning effec-
tive embeddings and codes for image retrieval at different required recall rates and numbers
of top returned samples.

4 Further Analysis and Discussion

Codeword Diversity Regularization Variants. In Fig. 2 (left), we test SSCQ with different
codeword regularization strategies, where Lcd−so f t and Lcd−ed denote soft quantization and
squared Euclidean distance in Eq.(1). Lcd−spro denotes squared probability [12] in Eq.(1).
We observe that SSCQ with entropy maximization Lcd achieves encouraging result.
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Algorithm 1 Self-Supervised Consistent Quantization.
Input: A baseline model, unlabeled training data X

1: for sampled mini-batch {xi}Nb
i=1 do

2: Generate two augmented samples for each x
3: Extract embedding representation f of all samples
4: Extract quantized representation z of all samples
5: Compute Licz for z
6: Compute Lic f for f
7: /* Part consistent quantization */
8: Compute Lpn for z
9: /* Global consistent quantization */

10: Compute Lcc for fused φ( f ,z)
11: /* Codeword diversity loss*/
12: Compute Lcd for fm and cm,k
13: /* Unified learning objective */
14: Optimize the model with L
15: end for
16: end for
Output: A trained model for image retrieval.

Representation Fusion Variants. In Fig. 2 (right), we report the performance using dif-
ferent embedding and quantized representations fusion strategies, including concatenation,
summation, cross consistent contrastive regularization, and quantized representations only.
We observe that SSCQ with Lcc−con and Lcc−sum yield better results than using Lcc−cro and
Lcc−qua as [22].

Temperature Parameter Sensitivity. We evaluate the performance of our SSCQ with the
temperature parameters. SSCQ is robust to the values of τcc, τpn and τsq, and performs
competitively. Since τic relates to the basic component of contrastive quantization, it is more
sensitive and gives competitive result when set at 0.5. Detailed evaluations can be found in
the supp. mat. for the completeness.

Effect of Nk in Lpn. Most hyper-parameters are set following SPQ [9], while Nk and weight-
ing parameters are empirically selected. In Table 4, we report the performance using different
values for Nk on CIFAR-10.

Qualitative Visualizations. In Fig. 3, the tSNE visualizations show that the class-wise
distribution has a better separability after applying part loss. We also visualize some retrieval
results of our SSCQ and SPQ [9] in Fig. 4. We can see that both SSCQ and SPQ can
retrieve visually similar images from the database, but SSCQ is capable of exploring more
discriminative information and results in more relevant retrieval results with higher accuracy.
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Type Method 16 bits 32 bits 64 bits
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SSCQ-p (ours) 81.9 82.6 82.8

Deep fully
unsupervised
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SSCQ (ours) 73.8 75.9 76.7

Table 3: Comparison with the classic and state-of-the-art unsupervised methods on
FLICKR25K in terms of mAP (%).
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Figure 1: PR curves (Top) and P@1000 curves (Bottom) on CIFAR-10, NUS-WIDE and
FLICKR25K (32 bits).
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Figure 2: Evaluating (Left) codeword diversity regularization variants and (Right) represen-
tation fusion variants on CIFAR-10 (32 bits).
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Figure 3: tSNE on CIFAR-10 validation queries for Licz +Lic f (left) and Licz +Lic f +Lpn
(right). Cat (class 3) and Dog (class 5) show better separability after applying part loss as
highlighted in the red bounding box.
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Figure 4: Retrieval results of our approach and SPQ on CIFAR-10, NUS-WIDE and
FLICKR25K (32 bits). False retrieval results are denoted in red bounding boxes.


