

Visual Intelligence Machine Perception Group

Weakly-Supervised Visual-Textual Grounding with Semantic Prior Refinement

D. Rigoni, L. Parolari, L. Serafini, A. Sperduti, L. Ballan davide.rigoni@phd.unipd.it - luca.parolari@studenti.unipd.it

1. TASK AND PROBLEM 2. ALIGNING CONCEPTS FULLY-SUPERVISED WEAKLY-SUPERVISED Output Alignment Input sim("woman", flowers) = 0.12 sim("woman", woman) ~ 1 sim("woman", ball) = 0.08tennis racket sim("tennis ball", flowers) = 0.12 woman shoe sim("tennis ball", woman) = 0.03 "woman" sim("tennis ball", ball) = 0.9 "A woman tries to volley a

tennis ball'

Negative example

LOSS (to be minimized)

swimming

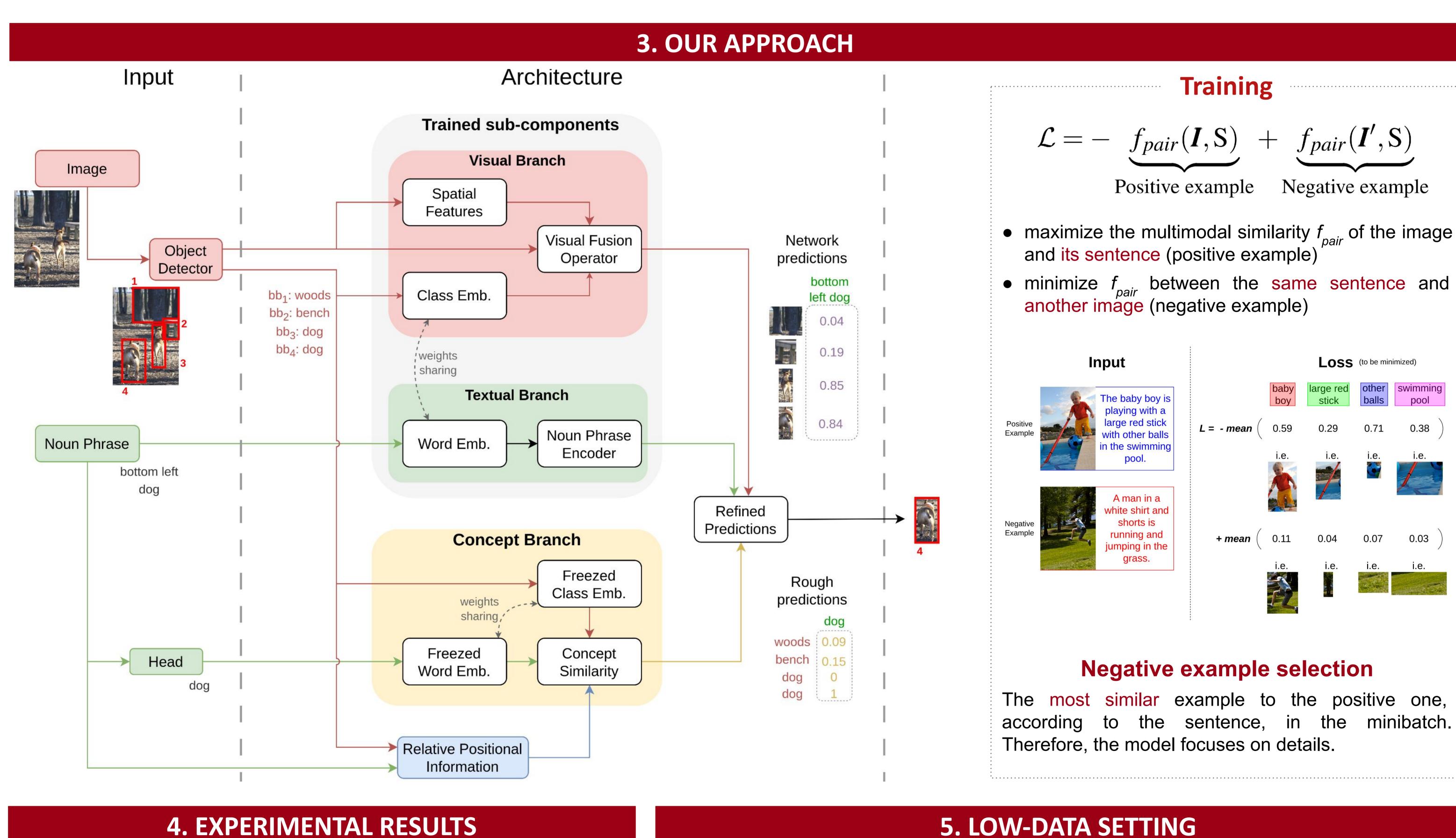
pool

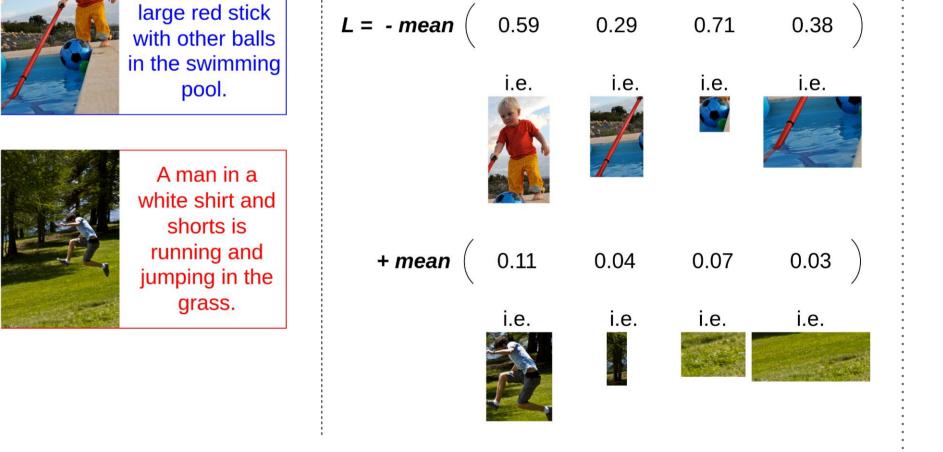
Visual Grounding is the task of aligning the entity mentioned in a query with the respective portion of the image

Issue: annotations are hard and expensive to collect

• In weakly-supervised setting, fine-grained annotations are not available at training time

- The object detector outputs the proposals and their categories
- Using word embedding we can grossly align phrases and proposals





Negative example selection

Training

 $\mathcal{L} = - f_{pair}(\mathbf{I}, \mathbf{S}) + f_{pair}(\mathbf{I}', \mathbf{S})$

Positive example

and its sentence (positive example)

another image (negative example)

Input

Negative

Example

The baby boy is

playing with a

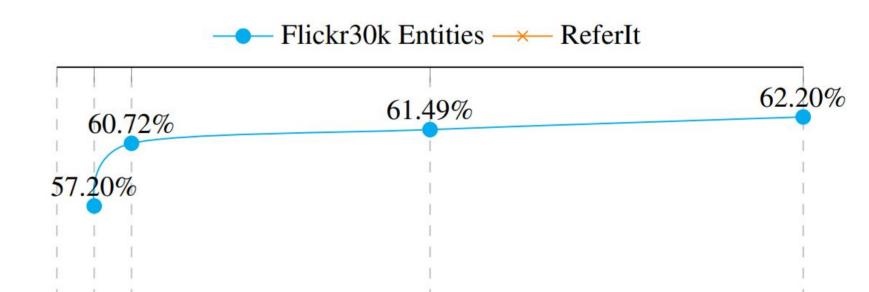
The most similar example to the positive one, according to the sentence, in the minibatch. Therefore, the model focuses on details.

4. EXPERIMENTAL RESULTS

Model	Flickr30k E. (%)		ReferIt (%)	
INIOUEI	↑ Acc.	↑ P. Acc.	↑ Acc.	↑ P. Acc.
Top-down Saliency	_	50.10	_	_
KAC Net	38.71	-	15.83	_
Semantic Self-Sup.	-	49.10	_	39.98
Anchored Transformer	33.10	-	13.61	-
Multi-level Multimodal	_	69.19	-	48.42
Align2Ground	-	71.00	-	_
Counterf. Resilience	48.66	-	-	-
MAF	61.4	-	-	-
Contrastive Learning	51.67	76.74	-	-
Grounding By Sep.	-	75.60	-	58.21
Relation-aware	59.27	78.60	37.68	58.96
Contrastive KL Distill.	53.10		38.39	-
EARN	38.73	-	36.86	_
RefCLIP	-	-	42.64	-
SimMaps	45.56	79.95	38.74	70.25
SPR baseline + CLIP (ours) SPR model (ours)	56.89 62.20	77.06 80.68	40.99 48.04	57.48 62.40

Accuracy results on Flickr30k Entities and ReferIt test set by our model trained in low-data environments.

The percentage refers to the fraction of the training set considered during training.

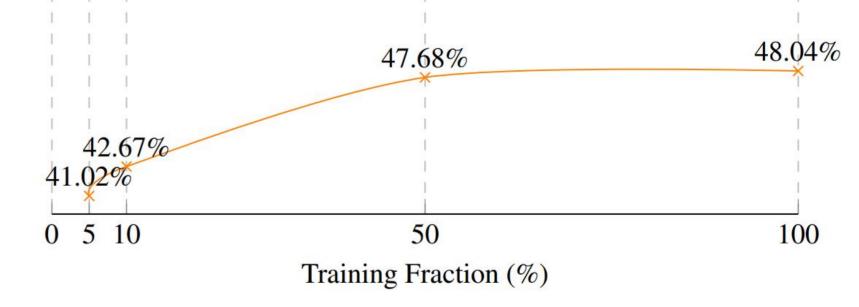


The model shows stable performances thanks to the concept branch.

6. MODEL ABLATION

Accuracy of our model's components. The Concept Branch contributes more to the final model performances.

Concept Branch		Rel. Posit. Information		ReferIt (%)
×	~	×	23.52	15.03
~	×	×	54.96	40.07
~	×	~	55.02	42.69
~	~	×	62.10	45.44
~	~	~	62.20	48.04



7. CONCLUSION

- **1.** We propose an untrained, zero-shot alignment module
- **2.** Our model comparable show performance trained with 50% of data 3. Absolute improvement of 9.6% on
- ReferIt dataset

Results on Flickr30k Entities and ReferIt test sets. Acc. is the standard accuracy metric, while *P. Acc.* is the pointing game accuracy metric.