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2. De-identify

What is Remote Photoplethysmography (rPPG) ?

@ Decelves the 1dentity recognizer, resulting in wrong and non-confident identity
® Convenient non-contact method for cardiac signal estimation predictions
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® rPPG signals are extracted from facial videos recorded with RGB cameras id (X" Fia, ) KIE;@; id (%> Fia,y) - where Xg = {X"(i)}izy

® Derived from subtle periodical variations in facial colour (sensitive to noise)
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3. Preserve rPPG

@ Ensure that the perturbations do not deteriorate the rPPG signal
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Potential Privacy issues

¥ Data contains both sensitive physiological signals and facial videos, which are L = &Lyec + BLia + YLrppg

biometric data subject to special restrictions (GDPR, EU Al Act)
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¥ De-identification from machines is crucial for future applications

Results

Our rPPG preserving De-identification method @ Visual acceptance PSNR>30dB and SSIM approx. 0.97

@ Signals and heart rates extracted of high quality (R =0.99, RMSE < 1)
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® Retains data utility (underlying rPPG signals and visual appearance) while removing ® De-identification Is successful, with accuracy below random guessing and high EER
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@ Reconstructs input video with visually imperceptible perturbations

Lyoe(X,X*) =|X —X*|5 + 1 ZT: 1 {: SSIM (wix,, wix?) L 4 First_ Iearr_1ing basec_l meth_od for facigl video d(_a-identificati_on that preserves the
r=Ww3 physiological and visual fidelity, while protecting user's privacy from machines

@ Experiments on two public datasets show effectiveness of our method in deteriorating
biometric performance, while preserving visual information and rPPG signal.

N\ I / ® Future work will include more challenging biometric attack scenarios and removal of
soft biometrics while preserving rPPG.
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