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1 Implementation Details

For IGEV-Stereo [4] and DispNetC [2], we follow the setting of their original papers. For
Unimatch-flow [5] network, we set the number of scales as 2 and do not use task-specific
refinement. For IGEV-Stereo and Unimatch-flow network, we use AdamW optimizer with
the momentum β1 = 0.9, β2 = 0.999 and learning rate α = 0.0001. For DispNetC, we use
Adam optimizer with the momentum β1 = 0.9, β2 = 0.999 and learning rate α = 0.0001. We
implement this method on Pytorch. For Driving & KITTI2015 datasets we train for 100k
steps and for VKITTI2 & KITTI2015 datasets we train for 200k steps. During training,
we optimize the domain translation network every 3 steps and optimize the stereo matching
network and optical flow estimation network every step. We set batch size to 4 in the training
process on 2 NVIDIA A6000 GPUs.

2 Further Comparison

We further compare our methods with UnDAF[3], following their experiment settings with
the same stereo matching and optical flow estimation backbones respectively on VKITTI2
& KITTI15 datasets. We only report the F1 scores as UnDAF only provide F1 scores on two
tasks and they do not release their code. The results are shown in Table 1. Our framework
performs better.
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Table 1: Results on datasets from VKITTI2 to KITTI2015.
F1-disparity (%) F1-flow (%)

UnDAF 2.85 10.23
Ours 2.72 9.81

Figure 1: Synthetic-to-real translation from Driving to KITTI2015. Left: RGB leftA images;
Middle: generated fake_leftB images by StereoGAN; Right: generated fake_leftB images of
our proposed method. Our proposed method avoids the appearance of noisy strips and helps
maintain more realistic color.

3 Visualizations

We provide qualitative visualizations that compare our method to previous approaches on
domain translation, stereo matching, and optical flow estimation.

3.1 Visualization of Domain Translation

Here we visualize the results of domain translation and compare our results with StereoGAN.
We visualize the results on both Driving and VKITTI2. Figure 1 shows the comparison in
synthetic-to-real translation, Figure 2 shows the comparison in real-to-synthetic translation,
and Figure 3 shows the comparison of real-synthetic-real cycle translation. It can be seen that
compared with StereoGAN [1], under the supervision of perceptual loss Lperceptual , cosine
similarity loss Lcos and L f low_warpx in the same iteration, the generated images are of high
quality with accurate color information and fewer visual artifacts, maintaining both global
consistency and detailed information in edges. The accurate domain translation contributes
to better performance in stereo matching and optical flow estimation tasks.
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Figure 2: Real-to-synthetic translation from KITTI2015 to Driving. The first row: RGB
leftB image. The second row: real-to-synthetic generated fake_leftA images by StereoGAN.
The third row: real-to-synthetic generated fake_leftA images by our proposed method. Our
proposed method avoids the appearance of noisy points and helps maintain global consis-
tency.

3.2 Visualization on Stereo Matching Task

We visualize the results of our proposed framework and compare the results with the results
of StereoGAN in Figure 4. Our method generates disparity maps that maintain more accurate
details in boundary regions.

3.3 Visualization on Optical Flow Estimation Task

We visualize the results of our proposed framework and compare the results with the source-
only results of Unimatch-flow in Figure 5. Our proposed method effectively handles oc-
cluded and out-of-boundary pixels.
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Figure 3: Real-synthetic-real cycle translation between Driving and KITTI2015. Left: RGB
leftB image; Middle: generated rec_leftB images by StereoGAN; Right: generated rec_leftB
images by our proposed method. Our proposed method maintains accurate color in the sky
and car region.
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Figure 4: Stereo matching task comparison from VKITTI2 to KITTI2015. Left: RGB left
image; Middle: StereoGAN based on IGEV backbone; Right: our method based on IGEV
and Unimatch-flow backbone.

Figure 5: Optical flow estimation task comparison from VKITTI2 to KITTI2015. Left:
RGB left image; Middle: Unimatch-flow source only; Right: our method based on IGEV
and Unimatch-flow backbone.


