A Structure-Guided Diffusion Model for Large-Hole Image Completion

Daichi Horita¹, Jiaolong Yang², Dong Chen², Yuki Koyama³, Kiyoharu Aizawa¹, Nicu Sebe⁴ ¹The University of Tokyo, ²Microsoft Research Asia, ³AIST, ⁴University of Trento

Introduction

Objective

We aim to enable an edge-guided large-hole image completion with diffusion models (DMs).

Motivation

- > Large-hole completion remains challenging due to limited structural information.
- Current limitations of previous methods
 - > GAN methods often fail to generate a rational structure.
 - > DM methods tends to produce irrelevant contents

Approach

> We address this problem by integrating explicit structure quidance as edges into diffusion-based image completion forming our structure-guided diffusion model (SGDM).

Preliminaries

- > A forward step of DDPM is defined as:
- $q(x_t|x_0) = \mathcal{N}(x_t|\sqrt{\alpha_t}x_0, (1-\alpha_t)\mathbf{I}), \alpha_t$: pre-defined noise scale.
- > Given a Gaussian noise $z \sim \mathcal{N}(z; \mu, \Sigma)$, Tweedie's formula, which is known as optimal Bayesian denoising (OBd), perform a denoising in a single step: $\mathbb{E}[\mu|z] = z + \sum \nabla_z \log p(z)$.
- > A single-step denoising operation of DDPM can be defined as:

$$F(x_t) \coloneqq \hat{x}_0^t = \frac{x_t + (1 - \alpha_t) \nabla_{x_t} \log p(x_t)}{\sqrt{\alpha_t}}$$

Structure-Guided Diffusion Model

SGDM consists of two cascaded diffusion models. structure generator f_{θ} and texture generator g_{ϕ} .

 \succ For conditions such as a hole and edges, we employ ControlNet R.

Training

- Individual training
 - Both generators are trained independently.
- > Joint fine-tuning after the individual training
 - > We propose a novel joint training strategy using Tweedie's formula to enable an end-to-end training.
 - > Tweedie's formula denoises a noisy edges into noiseless edges using the output of the structure generator.

Inference

> Given an input image with missing regions, SGDM generates edges and then textures sequentially

Generated

edges

Output

Applications

Sketch-guided image completion

> Language-guided image completion

(b) "A photo of a person, blue eve (a) "A photo of a smile person laughing mouth eyes"

Experiments

Qualitative comparison

Input	Original edges	Original image	Stable diffusion	MAT	ZITS	SGDM (Ours)
-------	-------------------	-------------------	---------------------	-----	------	----------------

Quantitative comparison

	Modeling	Places (512 × 512)						CelebA-HQ (512 \times 512)					
Method		Small mask			Large mask		Small mask			Large mask			
		FID↓	P-IDS↑	U-IDS↑	FID↓	P-IDS↑	U-IDS↑	FID↓	P-IDS↑	U-IDS↑	FID↓	P-IDS↑	U-IDS↑
SGDM (ours)	DM	3.85	25.54	38.53	6.96	18.12	31.78	2.58	22.01	33.56	4.72	13.99	24.97
Stable Diffusion [2]	DM	5.36	16.32	32.05	7.21	15.34	30.80	-	-	-	-	-	
LDM [40]	DM	5.64	13.42	30.66	8.74	11.7	27.00	-	-	-	-	-	-
MAT [19]	GAN	4.10	25.56	37.73	7.11	18.40	32.46	2.81	19.24	31.33	5.04	11.42	24.13

Ablation study

Places		Large mask						
Model	Samples	$FID\downarrow$	LPIPS \downarrow	<u>~</u> 7/				
(a) Indiv. only	25M	32.28	0.188					
(b) + Joint w/o OBd	0.1M	28.68	0.175					
(c) + Joint w OBd	0.1M	27.47	0.170	(a) Indivual training	(b) + Joint w/o optimal	(c) + Joint with optimal		
	1 M	27.81	0.168	(,	Bayesian denosinig	Bayesian denosinig (Full)		

Conclusion

- > We have presented a structure-quided diffusion model (SGDM), which uses structural guidance in image completion.
- > We have proposed a novel training strategy to enable effective end-toend training.
- > Incorporating structural guidance has not only improved the visual quality but also enabled user-guided image editing.

Project page can be available!!