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Ø SGDM consists of two cascaded diffusion models.
structure generator 𝑓! and texture generator 𝑔".

Ø For conditions such as a hole and edges, we employ ControlNet 𝑅.

Ø Individual training
Ø Both generators are trained independently.

Ø Joint fine-tuning after the individual training
Ø We propose a novel joint training strategy using 

Tweedie’s formula to enable an end-to-end training.
Ø Tweedie’s formula denoises a noisy edges into noiseless 

edges using the output of the structure generator.

Ø We aim to enable an edge-guided large-hole image completion 
with diffusion models (DMs).

Introduction
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Motivation

Ø Large-hole completion remains challenging due to limited 
structural information.

Ø Current limitations of previous methods
Ø GAN methods often fail to generate a rational structure.
Ø DM methods tends to produce irrelevant contents

Approach

Ø We address this problem by integrating explicit structure 
guidance as edges into diffusion-based image completion 
forming our structure-guided diffusion model (SGDM).
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Preliminaries

Ø A forward step of DDPM is defined as:
𝑞 𝑥#|𝑥$ =𝒩 𝑥#| 𝛼#𝑥$, 1 − 𝛼# 𝐈 , 𝛼#: pre-defined noise scale.

Ø Given a Gaussian noise 𝑧~𝒩 𝑧; 𝜇,∑ , Tweedie’s formula, which is 
known as optimal Bayesian denoising (OBd), perform a denoising in 
a single step: 𝔼 𝜇|𝑧 = 𝑧 +∑∇%log 𝑝 𝑧 .

Ø A single-step denoising operation of DDPM can be defined as:
F 𝑥# ≔ <𝑥$# =
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Ø We have presented a structure-guided diffusion model (SGDM), which 
uses structural guidance in image completion.

Ø We have proposed a novel training strategy to enable effective end-to-
end training.

Ø Incorporating structural guidance has not only improved the visual 
quality but also enabled user-guided image editing.
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Method Modeling
Places (512 ⇥ 512) CelebA-HQ (512 ⇥ 512)

Small mask Large mask Small mask Large mask

FID# P-IDS" U-IDS" FID# P-IDS" U-IDS" FID# P-IDS" U-IDS" FID# P-IDS" U-IDS"

SGDM (ours) DM 3.85 25.54 38.53 6.96 18.12 31.78 2.58 22.01 33.56 4.72 13.99 24.97

Stable Diffusion [2] DM 5.36 16.32 32.05 7.21 15.34 30.80 - - - - - -
LDM [40] DM 5.64 13.42 30.66 8.74 11.7 27.00 - - - - - -
MAT [19] GAN 4.10 25.56 37.73 7.11 18.40 32.46 2.81 19.24 31.33 5.04 11.42 24.13
MISF [21] GAN 14.52 3.58 16.23 18.05 2.8 13.19 9.92 4.27 14.53 21.04 0.43 1.88
CoordFill [28] GAN 6.32 10.4 27.74 14.52 3.58 16.23 4.27 7.35 20.13 10.54 1.57 5.52
ZITS [5] GAN 4.25 19.56 34.56 8.24 10.84 25.74 - - - - - -
MAE-FAR [4] GAN 4.06 22.18 36.82 7.71 15.06 28.74 - - - - - -
LaMa [50] GAN 4.09 22.18 36.58 8.00 13.54 27.47 4.06 8.55 21.34 8.59 2.17 7.41
CoModGAN [69] GAN 4.87 22.44 35.99 8.73 15.60 30.10 - - - - - -
PUT [27] AR 7.73 2.68 18.35 15.17 2.54 12.89 - - - - - -

Table 1: Quantitative comparisons on Places [73] and CelebA-HQ [14]. The best and second
best results are in red and blue.

5 Experiments

Datasets. The experiments were conducted with Places [73] and CelebA-HQ [14], which
cover different degrees of context (natural scenes only vs. face). The image resolution was
512⇥512 for all experiments. For Places, we prepared a train set and a test set with 8 million
(M) and 5,000 images. The test set was created from the official test set for our evaluation. For
CelebA-HQ, we prepared a train set and a test set with 24,183 and 2,993 images, respectively.
For a better understanding of the performances for holes with various sizes, we prepared two
different masks (i.e. large and small masks) following MAT [19].
Evaluation metrics. Following [19, 69], we used FID [9], P-IDS, and U-IDS [69] to measure
a perceptual fidelity between ground truth and hole-filled images for evaluation. P-IDS and
U-IDS robustly assess perceptual fidelity and correlate well with human preferences [69].
Similarity-based metrics such as PSNR and SSIM fail to measure completion, thus, we did
not use these metrics.
Implementation details. Before the training, we initialized our generators’ weights with
stable-diffusion-2-1-base [1], which was trained using LAION-5B dataset [44]. We did not
use any prompt inputs. For the individual training, each network was trained for 25M images
on Places and CelebA-HQ. Additionally, we carried out the joint training with 1M images.
The batch size was fixed to 1. Both trainings were performed with AdamW optimizer [29]
with b1 = 0.9 and b2 = 0.999 and a learning rate of 10�5. We conducted all experiments with
four NVIDIA A100 GPUs. To generate images, we used RePaint [30] sampler.

5.1 Comparison with State of the Art Methods

Quantitative comparisons. We provide the quantitative performance with different masked
regions on Places and CelebA-HQ, respectively. Only ZITS [5] used an edge map as structure
guidance. Table 1 shows the SGDM achieved the best performance in all metrics under both
small and large masks on CelebA-HQ. However, on Places, the SGDM yielded the best FID,
but demonstrated P-IDS and U-IDS comparable to MAT.
Qualitative comparisons. Figure 3 shows the qualitative comparison of the competing
methods. We see that the proposed SGDM was able to produce rational edges and coherent
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Conclusion

Applications

Ø Sketch-guided image completion
Input Generated edges User-edited edges
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Ø Given an input image with missing regions, SGDM generates edges 
and then textures sequentially
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(a) “A photo of a smile person, laughing mouth, eyes” (b) “A photo of a person, blue eye”
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Ø Language-guided image completion

Project page can 
be available!!


