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This supplementary material first elaborates on RD [4] and the proposed PACKD. Then
we provide results on MVTec 3D-AD [2] and Eyecandies [3] datasets in Tab. 1. Finaly, the
subset-level results on MVTec AD [1] and MPDD [6] datasets are listed from Tab. 2 to 5.

Detailed Architecture of RD and PACKD

Fig. 1 (a) and (b) show the architecture of RD [4] and the proposed framework, respectively.
In Fig. 1 (a), given a support sample Xs, the original RD produces feature representations

{FTi
s }3

i=1 from the first three stages. Then, FT1
s ∈ RC1×H1×W1 and FT2

s ∈ RC2×H2×W2 are pro-
cessed by convolution blocks to have the same spatial dimension as FT3

s ∈ RC3×H3×W3 and
concatenated along channel with FT3

s . The resulting feature passes through a transformation
encoder T to form the one-class embedding, denoted as FT4

s ∈ RC4×H4×W4 . Finally, based
on it, the student decoders aim to reconstruct the distillation targets {FTi

s }3
i=1 and give the

corresponding reconstructions {FSi
s }3

i=1. The knowledge distillation loss Eq. (1) in the paper
is used to enforce the feature consistency between {FTi

s ,FSi
s }3

i=1. In inference, the similarity
between {FTi ,FSi}3

i=1 of the test sample is calculated for final anomaly detection.
Fig. 1 (b) demonstrates how we insert the prototype extraction and integration mod-

ule (PEIM) and apply contrastive distillation strategy into RD. Differently, for the support
image Xs, it only goes through the whole teacher network (owning four stages) and gen-
erates representations {FTi

s }3
i=1. Contrarily, the query image Xq is handled by the RD and

produces teacher representations {FTi
q }3

i=1, one-class embedding FS4
q , and student represen-

tations {FSi
q }3

i=1. The PEIM extracts prototypes PTi
s from FTi

s and integrate PTi
s into FSi

q , lead-
ing to F̂Si

q ,where i = 2,3,4. Besides, the CDS is constructed based on {FTi
s ,FTi

q ,FSi
q ,FSi

q−}
3
i=1,

where FSi
q− is the student representations of a query from a different category. And the or-

thogonal loss is conducted on {PTi
s }4

i=2. In inference, the few-shot normal sample acts as the
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Figure 1: Overview of (a) RD and (b) the proposed PACKD framework in the few-shot set-
ting. RD is trained on few-shot samples and evaluated on test samples of the same category.
Contrarily, our PACKD is trained on existing categories while tested on unseen ones.

Method
MVTec 3D-AD [2] Eyecandies [3]

k=2 k=4 k=8 k=2 k=4 k=8

PatchCore [7] 66.7 69.2 73.2 70.8 73.6 77.1
RegAD [5] 69.8 71.5 75.1 73.6 76.2 80.9

Ours 72.7 74.6 78.9 77.0 79.1 83.6

Table 1: Results on more datasets with image-level AUROC (%).

support sample, and the similarity between {FTi ,FSi}3
i=1 of the test sample are calculated for

final anomaly detection.

Results on More datasets
Please note that we follow [5] to perform few-shot comparison on the MVTec AD and MPDD
datasets but provide additional results on the VisA dataset to enhance the experiment section.
To further enhance the experiments, we provide results on the MVTec 3D-AD [2] and the
recently proposed Eyecandies [3] datasets in Table 1. It is observed that our method still
achieves better results.
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Category
k=2 k=4 k=8

TDG DifferNet RegAD Ours TDG DifferNet RegAD Ours TDG DifferNet RegAD Ours

Bottle 69.3 99.3 99.4 99.4 69.6 99.3 99.4 99.5 70.3 99.4 99.8 99.8
Cable 68.3 85.3 65.1 84.7 70.3 85.2 76.1 86.9 74.7 87.9 80.6 92.5

Capsule 55.1 73.0 67.5 72.2 47.6 80.3 72.4 74.1 44.7 78.6 76.3 80.4
Carpet 66.2 78.4 96.5 97.2 68.7 78.6 97.9 98.3 78.2 78.5 98.5 99.0
Grid 83.8 62.1 84.0 85.0 86.2 60.5 91.2 88.5 87.6 78.5 91.5 95.3

Hazelnut 67.2 94.9 96.0 96.0 71.2 95.8 95.8 96.2 82.8 97.9 96.5 97.1
Leather 93.6 90.7 99.4 100.0 93.2 91.2 100.0 100.0 93.5 92.2 100.0 100.0

Metal Nut 67.1 61.9 91.4 91.9 69.2 67.3 94.6 93.8 68.7 67.6 98.3 98.7
Pill 69.2 83.2 81.3 81.8 64.7 84.0 80.8 82.0 67.9 82.1 80.6 84.2

Screw 98.8 73.4 52.5 85.0 98.8 72.5 56.6 86.1 99.0 75.0 63.4 92.6
Tile 86.3 97.0 94.3 97.3 87.2 98.0 95.5 97.9 87.4 99.6 97.4 99.0

Toothbrush 54.4 60.8 86.6 86.6 57.8 62.5 90.9 92.1 57.6 60.8 98.5 99.5
Transistor 55.9 61.8 86.0 84.9 67.7 62.2 85.2 86.5 71.5 63.3 93.4 96.6

Wood 98.4 98.1 99.2 99.2 98.3 96.4 98.6 99.5 98.4 99.4 99.4 99.6
Zipper 64.4 89.2 86.3 91.1 65.3 84.8 88.5 92.8 66.3 87.3 94.0 95.8

Average 73.2 80.6 85.7 90.2 74.4 81.3 88.2 91.6 76.7 83.2 91.2 95.3

Table 2: K-shot anomaly detection results in terms of image-level AUROC (%) on the
MVTec AD dataset. Results are listed as the average AUROC of 10 runs.

Category
k=2 k=4 k=8

PatchCore RegAD Ours PatchCore RegAD Ours PatchCore RegAD Ours

Bottle 98.1 98.0 98.6 98.2 98.4 98.6 98.5 97.5 99.8
Cable 96.4 91.7 96.9 97.5 92.7 96.2 97.8 94.9 96.9

Capsule 96.5 97.3 97.7 96.8 97.6 97.7 97.7 98.2 98.4
Carpet 98.5 98.9 99.0 98.6 98.9 99.1 99.0 98.9 99.6
Grid 62.1 77.4 73.6 69.4 85.7 79.8 67.5 88.7 81.3

Hazelnut 96.3 98.1 97.0 97.6 98.0 97.9 96.4 98.5 98.6
Leather 99.0 98.0 95.9 99.1 99.1 99.3 99.3 98.9 99.6

Metal Nut 94.6 96.9 97.0 95.9 97.8 96.8 97.1 96.9 98.1
Pill 94.2 93.6 95.9 94.8 97.4 93.9 96.8 97.8 97.5

Screw 90.0 94.4 92.1 91.3 95.0 96.0 90.8 97.1 96.5
Tile 94.4 94.3 96.0 94.6 94.9 99.3 96.0 95.2 99.7

Toothbrush 97.5 98.2 98.8 98.4 98.5 98.2 98.2 98.7 98.9
Transistor 98.6 93.4 95.0 90.7 93.8 97.1 95.0 96.8 98.7

Wood 93.2 93.5 93.1 93.5 94.7 95.4 93.0 94.6 97.5
Zipper 98.0 95.1 98.3 98.1 94.0 98.5 98.2 97.4 99.3

Average 93.3 94.6 95.0 94.3 95.8 96.2 94.7 96.7 97.3

Table 3: K-shot anomaly detection results in terms of pixel-level AUROC (%) on the MVTec
AD dataset. Results are listed as the average AUROC of 10 runs.
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Category
k=2 k=4 k=8

TDG DifferNet RegAD Ours TDG DifferNet RegAD Ours TDG DifferNet RegAD Ours

Bra. Black 46.4 56.7 63.3 68.2 48.8 59.9 63.8 70.2 51.0 69.7 67.3 70.5
Bra. Brown 54.9 61.3 59.4 64.7 57.5 64.2 66.1 67.8 65.4 66.3 69.6 69.0
Bra. White 64.0 42.2 55.6 58.5 65.4 51.8 59.3 59.7 66.8 69.1 61.4 60.2
Connector 53.1 54.1 73.0 74.5 55.8 54.8 77.2 76.5 62.9 54.5 84.9 75.3
Metal Plate 91.8 96.8 61.7 69.8 95.1 98.2 78.6 77.6 98.4 99.8 80.2 78.0

Tubes 51.8 49.8 67.1 64.1 58.5 50.7 67.5 69.4 64.9 52.6 67.9 70.4

Average 60.3 60.2 63.4 66.6 63.6 63.3 68.3 69.8 68.2 68.5 71.9 70.5

Table 4: K-shot anomaly detection results in terms of image-level AUROC (%) on the MPDD
dataset. Results are listed as the average AUROC of 10 runs.

Category
k=2 k=4 k=8

RD PatchCore RegAD Ours RD PatchCore RegAD Ours RD PatchCore RegAD Ours

Bra. Black 75.4 78.9 - 95.1 75.9 79.1 - 95.5 76.2 79.6 - 95.7
Bra. Brown 73.4 76.9 - 94.1 74.8 77.3 - 94.6 75.1 77.5 - 94.8
Bra. White 62.4 68.1 - 92.8 64.5 69.3 - 93.4 64.6 70.2 - 94.6
Connector 82.3 85.2 - 95.9 82.4 86.4 - 96.0 82.6 87.1 - 96.0
Metal Plate 76.5 86.3 - 94.8 77.2 86.7 - 95.3 77.5 86.9 - 95.6

Tubes 77.1 79.5 - 93.5 78.1 80.1 - 94.0 78.3 80.5 - 95.2

Average 74.5 79.2 93.2 94.4 75.5 79.8 93.9 94.8 75.7 80.3 95.1 95.3

Table 5: K-shot anomaly detection results in terms of pixel-level AUROC (%) on the MPDD
dataset. Results are listed as the average AUROC of 10 runs.
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