

Predictive Consistency Learning for Long-Tailed Recognition

Nan Kang, Hong Chang, Bingpeng Ma, Shutao Bai, Shiguang Shan, Xilin Chen

nan.kang@vipl.ict.ac.cn

Institute of Computing Technology (ICT), Chinese Academy of Sciences (CAS).

Motivation

Previous post-hoc correction methods focus on the design of correction bias, but little attention has been paid to the estimation of $\hat{p}(y|x)$, which limits the effectiveness of correction.

- The devil is the one-hot CE loss that uniformly push all predictions to 1.0, which violates the calibration of $\hat{p}(y|x)$.
- Exploring how to optimize the estimation of $\hat{p}(y|x)$ so as to enhance the effectiveness of post-hoc methods.

Methodology: Predictive Consistency Learning (PCL)

1. Introducing soft labels to adaptively assign flatter targets for hard/tail samples, which is calculated from the aggregation of historical predictions.

$$\begin{aligned} \mathcal{L}(x,\mathcal{T}) &= -\sum_{j=1}^{K} \mathcal{T}_{j}(x) \cdot \log\left[\hat{p}_{s}(y=j|x)\right], \qquad \mathcal{T}_{j}^{e}(x) = (1-\alpha_{e,i}) \cdot \delta_{i,j} + \alpha_{e,i} \cdot \bar{\mathcal{H}}_{j}^{e}(x), \\ &\qquad \bar{\mathcal{H}}_{j}^{e}(x) = (1-\beta) \cdot \mathcal{H}_{j}^{e-1}(x) + \beta \cdot \bar{\mathcal{H}}_{j}^{e-1}(x), \\ &\qquad \mathcal{H}_{j}^{e-1}(x) = \hat{p}_{s}(y=j|x;\boldsymbol{\theta}^{e-1}), \end{aligned}$$

4. Eliminate the accociated cla si higs from compression with no cost

2. Class-aware weight adjustment to progressively interpolate the weights between ground-truth and soft labels.

 $\alpha_{e,i} = \alpha \cdot \left(\frac{e}{F}\right)^{\lambda \cdot (1-q_i)}$

0.2

Pecd

argn

arg m

0.3

3. Label compression by confidence to reduce the space complexity from $\mathcal{O}(N \cdot K)$ to $\mathcal{O}(N \cdot k)$, where $k \ll K$.

 $S(x; \mathcal{H}, \gamma) = \min\{c \in [1, K] : \sum_{i=1}^{c} \mathcal{H}_{o(j)}(x) \ge \gamma\}$

Classe

2.0 1.0

 $\hat{p}(y) 0.50 0.33 0.17$

bias

by introducing the *effective cleases tribution*.

0

Ñ(y) 2.4 1.3 0.6

 $\hat{p}(y) 0.56 0.29 0.14$

						Softmax				
20220						cRT [15]				
15563)					OLTM [10]				
·						TSC [25]				
				1)	MISLAS [39]				
	0.1					PC-Softmax [12]				
					#	PCL				
					ŝ	CC-SAM [41]				
	01					PaCo [5]				
	0.1				d (PaCo + DLSA [33]				
					les	PaCo + DCRNets [1				
0.1		0.1	0.1		•	PCL + SAM + RA				
0.1		0.1	0.1		J					

 $\log p$

Experiments

Table 1: Top-1 accuracy (%) on CIFAR-10-LT and CIFAR-100-LT.									
Dataset		CIFAR-10-LT		CIFAR-100-LT					
Imbalance Ratio	100	50	10	100	50	10			
Softmax	70.4	74.8	86.4	38.4	43.9	55.8			
LDAM-DRW [2]	77.1	81.1	88.4	42.1	46.7	58.8			
MiSLAS [39]	82.1	85.7	90.0	47.0	52.3	63.2			
TSC [25]	79.7	82.9	88.7	43.8	47.4	59.0			
MetaSAug [24]	80.7	84.3	89.7	48.0	52.3	61.3			
PC-Softmax [12]	79.4 ± 0.5	82.8 ± 0.3	88.4 ± 0.4	45.5 ± 0.7	50.3 ± 0.4	60.0 ± 0.3			
PCL	$\textbf{83.8} \pm 0.42$	$\textbf{86.1} \pm 0.21$	$\textbf{90.1} \pm 0.10$	$\textbf{49.4} \pm 0.37$	$\textbf{54.0} \pm 0.20$	62.9 ± 0.15			
BALMS [28]	81.5 ± 0.0	-	91.3 ±0.1	50.8 ± 0.0	-	63.0 ± 0.1			
PaCo [5]	-	-	-	52.0	56.0	64.2			
CC-SAM [41]	83.9	86.2	-	50.8	53.9	-			
DCRNets [13]	85.0	-	-	51.4	-	-			
PCL + AA	85.5 ±0.34	$\textbf{87.5} \pm 0.21$	$\textbf{91.3} \pm 0.22$	52.1 ±0.16	$\textbf{57.0} \pm 0.24$	$\textbf{65.0} \pm 0.20$			

Table 2: Top-1 accuracy (%) on ImageNet-LT and Places-LT.									
Dataset	ImageNet-LT				Places-LT				
Method	Many	Med.	Few	All	Many	Med.	Few	All	
Softmax	64.0	33.8	5.8	41.6	45.9	22.4	0.4	27.2	
cRT [15]	58.8	44.0	26.1	47.3	42.0	37.6	24.9	36.7	
OLTM [10]	-	-	-	52.4	-	-	-	-	
TSC [25]	63.5	49.7	30.4	52.4	-	-	-	-	
MiSLAS [39]	61.7	51.3	35.8	52.7	39.6	43.3	36.1	40.4	
PC-Softmax [12]	64.1	48.4	32.4	52.2	43.1	39.7	33.9	39.8	
PCL	66.2	53.0	36.1	55.8	43.5	42.6	38.0	42.0	
CC-SAM [41]	61.4	49.5	37.1	52.4	41.2	42.1	36.4	40.6	
PaCo [5]	65.0	55.7	38.2	57.0	36.1	47.9	35.3	41.2	
PaCo + DLSA [33]	64.6	54.9	41.8	56.9	44.4	44.6	32.3	42.1	
PaCo + DCRNets [13]	-	-	-	58.0	-	-	-	41.7	
PCL + SAM + RA	67.3	58.8	43.5	60.0	43.5	44.0	39.9	43.0	

