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Motivation Methodology: Predictive Consistency Learning (PCL) Experiments
• Previous post-hoc correction methods focus on 

the design of correction bias, but little attention 
has been paid to the estimation of !𝑝 𝑦 𝑥 , 
which limits the effectiveness of correction.

• The devil is the one-hot CE loss that uniformly 
push all predictions to 1.0, which violates the 
calibration of !𝑝(𝑦|𝑥).

• Exploring how to optimize the estimation of  
!𝑝(𝑦|𝑥) so as to enhance the effectiveness of 
post-hoc methods.

① distribution 
mismatch

② 𝜏 value shift

1. Introducing soft labels to adaptively assign flatter targets for 
hard/tail samples, which is calculated from the aggregation of historical 
predictions.

2.  Class-aware weight adjustment to 
progressively interpolate the weights 
between ground-truth and soft labels.

3. Label compression by 
confidence to reduce the space 
complexity from 𝒪(𝑁 ⋅ 𝐾) to 
𝒪(𝑁 ⋅ 𝑘), where 𝑘 ≪ 𝐾.

4. Eliminate the accociated class bias from compression with no cost 
by introducing the effective class distribution.

Test-time shift accuracy PCL + Enemble

Better matched distribution Effective debias
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Figure 1: The average prediction Ex[p̂t(y|x;θ)] of CIFAR-100-LT under different test dis-
tributions. The training distribution is Forward-100. As the distribution shift becomes large
(from left to right), the average prediction no longer matches pt(y).

Analysis. The post-hoc correction biases reflect the discrepancy between the source distri-
bution ps(y) and the target distribution pt(y), and can be explicitly calculated and uniquely
determined. However, they typically assume that the estimated posterior probabilities p̂s(y|x)
are accurate approximations of the true probabilities ps(y|x), which may not hold, particu-
larly for tail classes.

In Fig. 1, we illustrate that poorly calibrated models fail to adapt to the target distribution
by visualizing the average prediction probability Ex[p̂t(y|x;θ)]. From a statistical perspec-
tive, a well-calibrated model should have an average prediction probability Ex[ p̂t(y|x;θ)]
that closely matches the label frequency pt(y). When pt(y) is imbalanced, models are ex-
pected to be more confident in sample-rich categories, which is a reasonable solution for
maximizing the overall accuracy. However, in Fig. 1, model trained using CE is unable to
well match the ideal pt(y) when the distribution shift becomes large.

The reasons can be summarized into the following two points. Firstly, minimizing the
cross-entropy loss with one-hot labels enforces each class to be equally confident, which
violates the calibration principle when dealing with long-tailed distributions. To reflect the
true correctness likelihood, hard-to-classify samples, especially tail samples, should output
smoother predictions on long-tailed dsitribution with more relaxed targets, rather than being
uniformly pushed towards 1.0 using one-hot labels. Moreover, one-hot labels provide limited
supervision for minority classes, as the inter-class correlations are ignored. This hampers the
transfer of knowledge from the majority to the minority classes, which is essential for post-
hoc correction, where the correction is applied in a class-wise manner as shown in Eq. (1).

3.2 Predictive Consistency Learning
The observations discussed above motivate us to estimate the model’s posterior probabilities
p(y|x) more accurately, which would enhance the effectiveness of post-hoc correction. Ide-
ally, we want hard-to-classify samples to produce less confident predictions and also main-
tain the inter-class correlations. It can be achieved by introducing a smoothing function
T (x) ∈ RK for each sample and obtaining the soft target cross-entropy loss L(x,T ) as:

L(x,T ) =−
K

∑
j=1

T j(x) · log [p̂s(y = j|x)] , (3)

where T j(x) is the j-th element of T (x). It can be proved that for soft target cross-entropy,
the optimal solution of Eq. (3) is p∗s (y = j|x) = T j(x)/∑cTc(x). Thus, the prediction p̂s(y|x)
would align with T (x), meaning that lower values of T j(x) would result in lower predictions
for that class and vice versa.
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To obtain an accurate estimation of p̂s(y|x), T (x) can be optionally formulated as the
output of a teacher model or an ensemble model. However, this would bring extra train-
ing costs. Besides, the output of another model may not well capture the highly predictive
uncertainty of tail classes, leading to T (x) being too far from the current prediction and pro-
ducing large gradients during training. Motivated by [18, 20], we instead propose using the
exponential moving average of historical predictions H(x) for T (x). By doing so, Eq. (3)
learns to maintain consistency for each sample and constrain the prediction probability in an
adaptive way.

To achieve this goal, we propose Predictive Consistent Learning (PCL), which optimizes
the posterior prediction p̂s(y|x) to enforce prediction consistency of training samples with
historical predictions. PCL can be viewed as an iterative learning method of the p̂s(y|x),
similar to the expectation-maximization (EM) algorithm. In the E-step, it updates the ex-
pected prediction T (x) based on historical predictions H(x). In the M-step, it uses soft
target cross-entropy to encourage the model’s prediction to be consistent with T (x).

Given an input x and ground-truth label i, T (x) in epoch e for the j-th class is defined as:

T e
j (x) = (1−αe,i) ·δi, j +αe,i · H̄e

j(x), (4)

H̄e
j(x) = (1−β ) ·He−1

j (x)+β · H̄e−1
j (x), (5)

He−1
j (x) = p̂s(y = j|x;θ e−1), (6)

where β is the EMA factor and δi, j is the Kronecker Delta function, representing the one-hot
target. αe,i is a parameter controlling the relative strength of one-hot and H̄(x), which will
be introduced next.

During the early stages of training, the historical predictions may not be well learned and,
consequently, may be less trustworthy in representing the hardness of the samples. There-
fore, it is necessary to progressively increase the strength of H̄e

j(x). PSKD [18] propose a
simple solution to set the αe = e/E, where E represent the total number of epochs. However,
due to the lack of sufficient gradient descent updates, the predictions for tail classes may be
arbitrarily random and, therefore, less trustworthy than those for head classes. To tackle
this, we propose Class-aware Weight Adjustment (CWA) for αe. Specifically, we introduce
a class-dependent factor:

αe,i = α ·
( e

E

)λ ·(1−qi)
, (7)

where qi = Ni/N1 is correlated with class frequencies. The hyper-parameter λ controls the
exponential term. By using 1− qi, the exponential term is designed to be negatively corre-
lated with the number of samples per class.

PCL improves p̂s(y|x) by regularizing the predictions of hard samples. To illustrate this,
consider a toy example of binary classification. Let us assume that the one-hot target for
input x is [1,0], and the predicted probability is [p,1− p]. According to Eq. (4), the weighted
T (x) would be [1−α(1− p),α(1− p)]. When x is a hard sample, meaning that 1− p is
high, T (x) is flatter than the one-hot target, thereby enforcing a flat prediction of x to match
its true likelihood. Conversely, when x is an easy sample, meaning that 1− p is low, T (x) is
close to the one-hot target, and the effect of PCL on them is much smaller.
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3.3 Compressed PCL

Although effective, storing H(x) requires O(N ·K) additional memory cost, which can be
expensive when the dataset is large. To address this issue, we propose Compressed PCL
(ComPCL), which compresses the storage of H via a compression function C and then per-
forms a debias operation to alleviate the associate class bias caused by the class imbalance.

Compression. To compress the size of T (x), the simplest solution is to set β = 0 and
store only the top-k highest prediction scores, which reduces the memory cost to O(N · k).
However, this solution cannot ultimately maintain the information of the complete H(x),
since hard samples require a larger k to approximate the original one. Therefore, we propose
Adaptive Label Compression (ALC) via the adaptive prediction set (APS) [1] on conformal
predictions to adaptively compress H(x).

Denote by o(·) the permutation function such that Ho(1)(x)≥Ho(2)(x)≥ · · ·≥Ho(K)(x).
Then, the size of the adaptive prediction set S(x;H,γ) at the coverage level γ is defined as:

S(x;H,γ) = min{c ∈ [1,K] :
c

∑
j=1

Ho( j)(x)≥ γ}. (8)

Then, the adaptive prediction set is defined as

Cγ(x) = {c : o(c)≤ S(x;H,γ)}. (9)

Based on Cγ(x), we keep the value of T j(x) if j ∈ Cγ(x) and set it to zero otherwise. In
practice, γ = 0.95 is sufficient to compress the average size of CIFAR-100-LT to be less than
5, while maintaining 95% prediction information.

Debias. After compression, as the model prediction more prefers majority classes, the mi-
nority classes are more likely to be excluded by Cγ . Thus, the compressed H(x) would
exhibit more bias towards the majority, leading to a higher τ∗ in Eq. (1). To tackle this issue,
one option is solving the optimal transport (OT) [10] on the predictions with the Sinkhorn-
Knopp algorithm [6], which is an effective debias operation when the balanced validation or
test data is available [10, 38]. To avoid the computation of solving OT, following the distri-
bution criterion of Fig. 1, a simplified alternative is to tune τ to maximizing the entropy of
the average class distribution (EntMax) to make it closer to uniform distribution. It is also
an effective operation that can find nearly optimal values of τ . However, both approaches
require an additional balanced set for tuning and can be computationally inefficient.

To make the debias operation more efficient and eliminate the dependence of an ad-
ditional balanced set, we propose to compute the Equivalent Class Number of the train-
ing set, which is defined as the average prediction at the last epoch: N̂ecn(c) = ∑x p̂s(y =
c|x;θ E) ,∀c ∈ [1,K]. Then we replace ps(y) in Eq. (1) with the Equivalent Class Distribu-
tion (ECD), which is defined as p̂ecd(y) = N̂ecn(y)/∑c N̂ecn(c). This adaptively eliminates
the bias based solely on training logits. the introduction of p̂ecd decouples the class bias
from the value of τ . Thus, for any strength of class bias, τ only needs to be set to the default
value of 1. Besides, The computation of N̂ecd can be performed online, incurring minimal
computational overhead.

TEMPLATE OF IEEE TRANSACTIONS 6

expected distributions ?B (H), remains unchanged. However,
considering the approximation when C(·) is applied, there is
no guarantee that the compressed output still approximates
?B (H). That is:

EG [C(H (G))] 0 ?B (H). (15)

The failure of approximating ?B (H) results in the model mak-
ing more biased predictions. As demonstrated in Fig. 4, even if
the original distributions are aligned, after label compression,
the resulting probability distribution becomes more skewed
due to the lower average confidence of the tail classes. In
this example, except for the first class, the ?̂(H) of the other
classes has decreased, indicating that the generated H(G) leads
to more biased predictions.

To tackle this issue, one option is solving the optimal
transport (OT) [5] on the predictions with the Sinkhorn-Knopp
algorithm [51], which is an effective debias operation. How-
ever, the computation of optimal transport requires balanced
validation or test data [5], [38] and is time-consuming.

To avoid the computation of solving OT, following the
distribution criterion of Fig. 2, a simplified alternative is
to tune g to maximizing the entropy of the average class
distribution (EntMax) to make it closer to uniform distribution.
It is also an effective operation that can find nearly optimal
values of g, which is more computationally efficient than OT.
However, it still requires an additional balanced set for tuning
and can be computationally inefficient.

To make the debias operation more efficient and eliminate
the dependence of an additional balanced set, we propose to
compute the Equivalent Class Number (ECN) of the training
set, which is defined as the average prediction at the last epoch:

#̂ecn (2) =
’
G

?̂B (H = 2 |G; \⇢) ,82 2 [1, ] . (16)

Then we replace ?B (H) in Eq. (3) with the Equivalent Class
Distribution (ECD):

?̂ecd (H) = #̂ecn (H)/
’
2

#̂ecn (2). (17)

This adaptively eliminates the bias based solely on training
logits. the introduction of ?̂ecd decouples the class bias from
the value of g. Thus, for any strength of class bias, g only
needs to be set to the default value of 1. Besides, The com-
putation of #̂ecd can be performed online, incurring minimal
computational overhead.

E. Summary of the Algorithm

In Algorithm 1, we summarize the algorithm of ComPCL.
Note that for ComPCL, we skip the exponential moving
average in Line 18 and set V to zero. Nevertheless, we
retain this line in the algorithm to ensure the completeness
of the process. Consequently, we can conveniently acquire the
pseudo-code of PCL by removing the compression in Line 11
and replace the equivalent class distribution ?̂ecd (H) with ?B (H)
in Line 21.

Algorithm 1 ComPCL Pseudo-code
Require: Model 5 , Epoch number ⇢ , Training set DB , Hyper-

parameters U, V, W.
1: Initialize N̂ 2 R as zero.
2: for 4 = 1 to ⇢ do

3: U4,8  U · (4/⇢)_· (1�@8 ) , 88 2 [1, ]. ù Eq. (9)
4: for Each sample {x, y} 2 DB do

5: Output prediction H4 (x)  5 (x).
6: if 4 == ⇢ then

7: N̂ N̂ + H4 (x). ù Eq. (16)
8: end if

9: if 4 > 1 then

10: Retrieve the stored H4�1 (x).
11: H4�1 (x)  CALC (H4�1 (x)). ù Eq. (13)
12: else

13: H1 (x)  0.
14: H̄1 (x)  0.
15: end if

16: Compute T 4 (x) from U4,y. ù Eq. (6)
17: Compute LPCL (G,T 4). ù Eq. (5)
18: Update H̄4 (x) from H4 (x) and V. ù Eq. (7)
19: end for

20: end for

21: Compute p̂ = Normalized(N̂). ù Eq. (17)
22: Apply post-hoc correction from p̂.

IV. EXPERIMENTS

A. Datasets and Implementation Details

CIFAR-10-LT and CIFAR-100-LT dataset. Both CIFAR-
10 and CIFAR-100 datasets [57] contains 50,000 images for
training and 10,000 for evaluation, with 100 and 10 categories,
respectively. CIFAR-10-LT and CIFAR-100-LT are long-tailed
versions of CIFAR-10 and CIFAR-100 with different imbal-
ance ratios A = #1/# , where A 2 {10, 50, 100}. Unless
otherwise specified, we use 100 as the default ratio.

To obtain more reliable results, we report the average and
standard deviation of 5 different runs. We use ResNet-32 as the
backbone following [52], which contains 0.47K parameters,
and train networks for 200 epochs using SGD with a learning
rate of 0.2, batch size of 256, and a multi-step learning rate
schedule at epoch 160 and 180 by 0.1.

TABLE II
SUMMARY OF THE HYPERPARAMETERS AND IMPLEMENTATION DETAILS.

Dataset ImageNet-LT Places-LT CIFAR-10-LT CIFAR-100-LT

imb. ratio 256 996 {10, 50, 100} {10, 50, 100}

Network

backbone ResNet-50 ResNet-152 ResNet-32 ResNet32
classifier Cosine Cosine Linear Linear
pretrain - ImageNet - -

Training

epochs 90 / 200 30 200 200
batch size 256 128 256 256

learning rate 0.1 0.001 & 0.1 0.2 0.2
LR schedule Cosine Cosine Step Step
weight decay 5 ⇥ 10�4

Method

U 0.7 0.4 {0.8, 0.9, 0.9} {0.7, 0.8, 0.9}
_ 0.3 0.1 {0.4, 0.4, 0.5} {0.6, 0.6, 0.6}
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standard learning [15]. There are also many other approaches proposed for long-tailed learn-
ing with different strategies including decoupled training [15, 26], meta-learning [24, 28],
contrastive learning [5, 14, 16, 17, 30], knowledge distillation [11, 22] and ensemble [31, 38].
Recently, some logits manipulation approaches have been proposed, including loss mod-
ification [27, 28, 34] which modifies the logits during training, and post-hoc correction
[10, 12, 23] which post-processes the model predictions during evaluation. Although im-
plemented differently, the former is equivalent to the latter if the learning objectives are
convex [27]. In practice, post-hoc correction is more flexible since it does not require re-
training the model when the test distribution changes. Prior post-hoc correction approaches
have primarily focused on the bias term associated with ps(y) and pt(y), while our method
emphasizes learning a more calibrated p̂s(y|x) to better align with the post-hoc correction
theory and remedy the flaw of post-hoc correction approaches.
Confidence Calibration. In addition to classification performance, calibration is an impor-
tant property for the reliability and interpretability of machine learning algorithms. It refers
to the alignment between model’s predictive confidence and the true correctness likelihood.
[9] discussed that modern neural networks are often poorly calibrated. Many strategies have
been proposed to improve calibration, including temperature scaling [36], histogram binning
[35], ensemble methods [21, 32], and mixup [29, 36, 37]. In this work, we investigate the
relationship between calibration and post-hoc correction of label distribution shift.

3 Method

3.1 Preliminaries

Notations. Let {N1,N2, · · · ,NK} and {M1,M2, · · · ,MK} denote the number of samples per
class for the training (source) set Ds and test (target) sets Dt , respectively. Without loss
of generality, we assume that N1 ≥ N2 ≥ · · · ≥ NK . In long-tailed recognition, the training
set is highly imbalanced with a high imbalance ratio r = N1/NK , and the tail classes have
very few training samples. Early long-tailed recognition approaches assume a balanced test
distribution pt(y) with Mi = Mj for all i, j, while recent works [12, 38] allow for arbitrary
test distributions.
Revisit of Post-hoc Correction. Under the label distribution shift between ps(y) and pt(y),
previous works introduce correction biases to minimize the average classification error.
These biases can be applied either through loss modification during training or post-hoc
correction during evaluation. For example, [27, 28] introduce an additive bias to the training
logits: fθ (x)[c] + τ · log ps(c), where τ is a hyper-parameter to control the strength. The
post-hoc version of the bias is given by reversing the sign of the bias term at test time:

argmaxc fθ (x)[c]− τ · log ps(c). (1)
argmaxc fθ (x)[c]− τ · log p̂ecd(c). (2)

Assuming the class-conditional data distribution remains unchanged, i.e. ps(x|y) = pt(x|y),
this bias can be derived by noting that p(y|x) ∝ p(x|y) · p(y). In theory, τ should be equal
to 1. However, in practice, the optimal τ∗ may be different, which reflect the degree of bias
of model predictions. In this case, tuning τ to maximize accuracy is close to calibrating the
logits using temperature scaling [9].
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contrastive learning [5, 14, 16, 17, 30], knowledge distillation [11, 22] and ensemble [31, 38].
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3 Method

3.1 Preliminaries

Notations. Let {N1,N2, · · · ,NK} and {M1,M2, · · · ,MK} denote the number of samples per
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argmaxc fθ (x)[c]− τ · log p̂ecd(c). (2)

Assuming the class-conditional data distribution remains unchanged, i.e. ps(x|y) = pt(x|y),
this bias can be derived by noting that p(y|x) ∝ p(x|y) · p(y). In theory, τ should be equal
to 1. However, in practice, the optimal τ∗ may be different, which reflect the degree of bias
of model predictions. In this case, tuning τ to maximize accuracy is close to calibrating the
logits using temperature scaling [9].
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(a) (b) (c) (d)

Fig. 5. (a) Ablation study of the value of U on CIFAR-100-LT. (b) Ablation study of the value of _ with different computations for class-aware @8 on
CIFAR-100-LT. (c) Comparision of different compression and debias operations when varying the size of H(G ) in ComPCL. (d) Comparision with related
baseline methods.

(a) (b) (c) (d)

Fig. 6. (a) Accuracy on CIFAR-10-LT with varying g. (b) Accuracy on CIFAR-100-LT with varying g. (c) Comparison of accuracy with / without using
ECD debias on CIFAR-100-LT with varying g. (d) Comparison of accuracy for different ensemble strategy for PCL on CIFAR-100-LT (200 epochs) and
ImageNet-LT (90 epochs).

similarly effective debiasing without the need for extra data
and incurs minimal computational overhead.

D. Comparison with Related Baselines
For better understanding of PCL, we conduct experiments

with some related baselines.
• Label Smoothing (LS): A regularization technique that in-

troduces slight uncertainty by interpolating between one-
hot targets and uniform targets using a smoothing factor,
which mitigates over-confidence issue during training.

• Class-Wise Label Smoothing (CW-LS): Similar to LS,
but tailoring different smoothing factors individually to
different classes. Similar technique is adopted by [24].

• Class-Mean PCL (CM-PCL): In CM-PCL, soft targets are
composed by retaining the mean predictions per class,
as opposed to storing the per-sample predictions utilized
in the original PCL. Different from CW-LS, CM-PCL
determines the smoothing factors based on the model’s
own predictions.

• False-Only PCL (FO-PCL) and Correct-Only PCL (CO-
PCL): Only applying PCL on the falsely classified sam-
ples or correctly classified samples.

• PSKD: PCL shares some similarities with the prior work
[49] in the idea of utilizing historical predictions. How-
ever, PCL differs from PSKD in several aspects, including
the scheduling of U, aggregation of predictions, ALC
compression, and ECD debias.

The results of these baselines are listed in Fig. 5(d).
Compared with these baselines, PCL achieves the best per-
formance. There are some observations: (1) The LS, CW-
LS, CM-PCL cannot even achieve better performance than

(a) Ensemble (b) Shift

(c) RandShift (d) Independent

Fig. 7. Different possible strategies of generating T(G ) for RIDE.

CE, which highlights the importance of sample-wise soft
targets adpoted in PCL. (2) Compared to CO-PCL, FO-PCL
exhibits a more significant improvement in accuracy, which
also validates our hypothesis that PCL achieves improvement
by constraining the predictive probabilities of hard samples.
(3) PCL outperforms all other baselines including the strong
PSKD by a significant margin, demonstrating the effectiveness
of the proposed method.
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Fig. 2. The average prediction EG [ ?̂C (H |G; \ ) ] of CIFAR-100-LT under different test distributions. The training distribution is Forward-100. As the distribution
shift becomes large (from left to right), the average prediction no longer matches ?C (H) .

perspective, a well-calibrated model should have an average
prediction probability EG [ ?̂C (H |G; \)] that closely matches the
label frequency ?C (H). When ?C (H) is imbalanced, models are
expected to be more confident in sample-rich categories, which
is a reasonable solution for maximizing the overall accuracy.
However, in Fig. 2, model trained using CE is unable to well
match the ideal ?C (H) when the distribution shift becomes
large.

The reasons can be summarized into the following two
points. Firstly, minimizing the cross-entropy loss with one-
hot labels enforces each class to be equally confident, which
violates the calibration principle when dealing with long-
tailed distributions. To reflect the true correctness likelihood,
hard-to-classify samples, especially tail samples, should output
smoother predictions with more relaxed targets, rather than
being uniformly pushed towards 1.0 using one-hot labels.
Moreover, one-hot labels provide limited supervision for mi-
nority classes, as the inter-class correlations are ignored. This
hampers the transfer of knowledge from the majority to the
minority classes, which is essential for post-hoc correction,
where the correction is applied in a class-wise manner as
shown in Eq. (3). When using post-hoc correction, as in
Eq. (3), it is difficult to adjust class-wise predictions without
incorporating inter-class knowledge.

C. Predictive Consistency Learning
The observations discussed above motivate us to estimate

the model’s posterior probabilities ?(H |G) more accurately,
which would enhance the effectiveness of post-hoc correc-
tion. Ideally, we want hard-to-classify samples to produce
less confident predictions and also maintain the inter-class
correlations. It can be achieved by introducing a smoothing
function T (G) 2 R for each sample and obtaining the soft
target cross-entropy loss L(G,T) as:

L(G,T) = �
 ’
9=1

T9 (G) · log [ ?̂B (H = 9 |G)] , (5)

where T9 (G) is the 9-th element of T (G). It can be proved
that the optimal solution of Eq. (5) is ?

⇤
B
(H = 9 |G) =

T9 (G)/
Õ
2
T2 (G). Thus, the prediction ?̂B (H |G) would align with

T (G), meaning that lower values of T9 (G) would result in
lower predictions for that class and vice versa.

To obtain an accurate estimation of ?̂B (H |G), T (G) can
be optionally formulated as the output of a teacher model

or an ensemble model. However, this would bring extra
training costs. Besides, the output of another model may not
well capture the highly predictive uncertainty of tail classes,
leading to T (G) being too far from the current prediction and
producing large gradients during training. Motivated by [48],
[49], we instead propose using the exponential moving average
of historical predictions H(G) for T (G). By doing so, Eq. (5)
learns to maintain consistency for each sample and constrain
the prediction probability in an adaptive way.

To achieve this goal, we propose Predictive Consistent
Learning (PCL), which optimizes the posterior prediction
?̂B (H |G) to enforce prediction consistency of training samples
with historical predictions. PCL can be viewed as an iterative
learning method of the ?̂B (H |G), similar to the expectation-
maximization (EM) algorithm. In the E-step, it updates the ex-
pected prediction T (G) based on historical predictions H(G).
In the M-step, it uses soft target cross-entropy to encourage
the model’s prediction to be consistent with T (G).

Given an input G and its ground-truth label 8, T (G) in epoch
4 is defined as:

T 4

9
(G) = (1 � U4,8) · X8, 9 + U4,8 · H̄ 4

9
(G), (6)

H̄ 4

9
(G) = (1 � V) · H 4�1

9
(G) + V · H̄ 4�1

9
(G), (7)

H 4�1
9

(G) = ?̂B (H = 9 |G; \4�1), (8)

where V is the EMA factor and X8, 9 is the Kronecker Delta
function, representing the one-hot target. U4,8 is a parameter
controlling the relative strength of one-hot and H̄ (G), which
will be introduced next.

During the early stages of training, the historical predic-
tions may not be well learned and, consequently, may be
less trustworthy in representing the hardness of the samples.
Therefore, it is necessary to progressively increase the strength
of H̄ 4

9
(G). PSKD [49] propose a simple solution to set the

U4 = 4/⇢ , where ⇢ represent the total number of epochs.
However, due to the lack of sufficient gradient descent updates,
the predictions for tail classes may be arbitrarily random and,
therefore, less trustworthy than those for head classes. To
tackle this, we propose Class-aware Weight Adjustment (CWA)
for U4. Specifically, we introduce a class-dependent factor:

U4,8 = U ·
⇣
4

⇢

⌘
_· (1�@8 )

, (9)

where @8 = #8/#1 is correlated with class frequencies. The
hyper-parameter _ controls the exponential term. By using 1�
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Fig. 3. Illustration of adaptive label compression (ALC) on different samples
based on their prediction scores with W = 0.9.

@8 , the exponential term is designed to be negatively correlated
with the number of samples per class.

PCL improves ?̂B (H |G) by regularizing the predictions of
hard samples. To illustrate this, consider a toy example of
binary classification. Let us assume that the one-hot target for
input G is [1, 0], and the predicted probability is [?, 1 � ?].
According to Eq. (6), the weighted T (G) would be [1�U(1�
?), U(1� ?)]. When G is a hard sample, meaning that 1� ? is
high, T (G) is flatter than the one-hot target, thereby enforcing
a flat prediction of G to match its true likelihood. Conversely,
when G is an easy sample, meaning that 1 � ? is low, T (G)
is close to the one-hot target, and the effect of PCL on them
is much smaller. In our experiments, we verify this point by
applying PCL only to correctly and falsely classified samples
respectively.

D. Compressed PCL
Although effective, storing H(G) requires O(# ·  ) addi-

tional memory cost, which can be expensive when the dataset
is large. For example, in ImageNet-LT, it requires storing
115.8M floating-point numbers in memory, which is several
times larger than the parameter count of a typical ResNet-50
model. To address this issue, we propose Compressed PCL
(ComPCL), which compresses the storage of H via a com-
pression function C and then performs a debias operation to
alleviate the associate class bias caused by the class imbalance.

Compression. To compress the size of H(G), the simplest
solution is to set V = 0 and store only the top-: highest
prediction scores, which reduces the memory cost to O(# · :).
Denote by C(·) the compression function, and Denote ⌘ 9 be
the 9-th element of H(G) 2 R , and >(·) as the permutation
function such that ⌘

> (1) � ⌘
> (2) � · · · � ⌘

> ( ) . Then the
top-: compression can be expressed as:

Ctop-k (⌘ 9 ) =
(
⌘ 9 , if ⌘ 9 � ⌘

> (: ) ,

0, otherwise.
(10)

However, this solution cannot ultimately maintain the infor-
mation of the complete H(G), since hard samples require
a larger : to approximate the original one. In long-tailed
distribution, the difficulties of samples varies a lot, which
losses the approximation abilities for hard samples. Therefore,
we propose Adaptive Label Compression (ALC) to adaptively

Fig. 4. Illustration of class bias caused by label compression.

compress H(G) via the adaptive prediction set [50] on con-
formal predictions, as illustrated in Fig. 3.

First, let the size of the adaptive prediction set be denoted
as ((G;H , W), which is defined as follows.

((G;H , W) = min{2 2 [1, ] :
2’
9=1

H
> ( 9 ) (G) � W}. (11)

Then, the adaptive prediction set �W (G) is defined as

�W (G) B �(G;H , W) = {2 : >(2)  ((G;H , W)}. (12)

After acquiring �W (G), the adaptive label compression function
CALC is expressed as:

CALC (⌘ 9 ) =
(
⌘ 9 , if 9 2 �W ,
0, otherwise.

(13)

Based on �W (G), we keep the value of ⌘ 9 if 9 2 �W (G) and
set it to zero otherwise. In practice, W = 0.95 is sufficient to
compress the average size of CIFAR-100-LT to be less than
5, while maintaining 95% prediction information.

Note that during storage, for each selected position, two
numbers need to be stored, including the probability value
denoted as ?, and corresponding class label denoted as 9 .
However, since the value of ? ranges from 0 to 1, it is sufficient
to encode the two numbers as ? + 9 . Then, during decoding,
simply retrieve its integer and decimal parts.

Debias. After compression, as the model prediction more
prefers majority classes, the minority classes are more likely
to be excluded by �W . Thus, the compressed H(G) would
exhibit more bias towards the majority, leading to a higher g⇤
in Eq. (3).

Formally, note that it always holds that the expected
distribution of ground-truth X8, 9 of Eq. (6) is identically equal
to ?B (H). Besides, without label compression, the expected
distribution of H(G) on the training set approximates ?B (H):

?̂B (H) = EG [H (G)] = EG [ ?̂B (H |G; \4�1)] ⇡ ?B (H), (14)

Consequently, the expectation distribution of T (G), obtained
by linearly combining the two terms in Eq. (6) with the same
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Table 1: Top-1 accuracy (%) on CIFAR-10-LT and CIFAR-100-LT.
Dataset CIFAR-10-LT CIFAR-100-LT

Imbalance Ratio 100 50 10 100 50 10

Softmax 70.4 74.8 86.4 38.4 43.9 55.8
LDAM-DRW [2] 77.1 81.1 88.4 42.1 46.7 58.8
MiSLAS [39] 82.1 85.7 90.0 47.0 52.3 63.2
TSC [25] 79.7 82.9 88.7 43.8 47.4 59.0
MetaSAug [24] 80.7 84.3 89.7 48.0 52.3 61.3
PC-Softmax [12] 79.4 ±0.5 82.8 ±0.3 88.4 ±0.4 45.5 ±0.7 50.3 ±0.4 60.0 ±0.3
PCL 83.8 ±0.42 86.1 ±0.21 90.1 ±0.10 49.4 ±0.37 54.0 ±0.20 62.9 ±0.15

BALMS [28] 81.5 ±0.0 - 91.3 ±0.1 50.8 ±0.0 - 63.0 ±0.1
PaCo [5] - - - 52.0 56.0 64.2
CC-SAM [41] 83.9 86.2 - 50.8 53.9 -
DCRNets [13] 85.0 - - 51.4 - -
PCL + AA 85.5 ±0.34 87.5 ±0.21 91.3 ±0.22 52.1 ±0.16 57.0 ±0.24 65.0 ±0.20

Table 2: Top-1 accuracy (%) on ImageNet-LT and Places-LT.
Dataset ImageNet-LT Places-LT

Method Many Med. Few All Many Med. Few All

Softmax 64.0 33.8 5.8 41.6 45.9 22.4 0.4 27.2
cRT [15] 58.8 44.0 26.1 47.3 42.0 37.6 24.9 36.7
OLTM [10] - - - 52.4 - - - -
TSC [25] 63.5 49.7 30.4 52.4 - - - -
MiSLAS [39] 61.7 51.3 35.8 52.7 39.6 43.3 36.1 40.4
PC-Softmax [12] 64.1 48.4 32.4 52.2 43.1 39.7 33.9 39.8
PCL 66.2 53.0 36.1 55.8 43.5 42.6 38.0 42.0

CC-SAM [41] 61.4 49.5 37.1 52.4 41.2 42.1 36.4 40.6
PaCo [5] 65.0 55.7 38.2 57.0 36.1 47.9 35.3 41.2
PaCo + DLSA [33] 64.6 54.9 41.8 56.9 44.4 44.6 32.3 42.1
PaCo + DCRNets [13] - - - 58.0 - - - 41.7
PCL + SAM + RA 67.3 58.8 43.5 60.0 43.5 44.0 39.9 43.0
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Fig. 3. Illustration of adaptive label compression (ALC) on different samples
based on their prediction scores with W = 0.9.

@8 , the exponential term is designed to be negatively correlated
with the number of samples per class.

PCL improves ?̂B (H |G) by regularizing the predictions of
hard samples. To illustrate this, consider a toy example of
binary classification. Let us assume that the one-hot target for
input G is [1, 0], and the predicted probability is [?, 1 � ?].
According to Eq. (6), the weighted T (G) would be [1�U(1�
?), U(1� ?)]. When G is a hard sample, meaning that 1� ? is
high, T (G) is flatter than the one-hot target, thereby enforcing
a flat prediction of G to match its true likelihood. Conversely,
when G is an easy sample, meaning that 1 � ? is low, T (G)
is close to the one-hot target, and the effect of PCL on them
is much smaller. In our experiments, we verify this point by
applying PCL only to correctly and falsely classified samples
respectively.

D. Compressed PCL
Although effective, storing H(G) requires O(# ·  ) addi-

tional memory cost, which can be expensive when the dataset
is large. For example, in ImageNet-LT, it requires storing
115.8M floating-point numbers in memory, which is several
times larger than the parameter count of a typical ResNet-50
model. To address this issue, we propose Compressed PCL
(ComPCL), which compresses the storage of H via a com-
pression function C and then performs a debias operation to
alleviate the associate class bias caused by the class imbalance.

Compression. To compress the size of H(G), the simplest
solution is to set V = 0 and store only the top-: highest
prediction scores, which reduces the memory cost to O(# · :).
Denote by C(·) the compression function, and Denote ⌘ 9 be
the 9-th element of H(G) 2 R , and >(·) as the permutation
function such that ⌘

> (1) � ⌘
> (2) � · · · � ⌘

> ( ) . Then the
top-: compression can be expressed as:

Ctop-k (⌘ 9 ) =
(
⌘ 9 , if ⌘ 9 � ⌘

> (: ) ,

0, otherwise.
(10)

However, this solution cannot ultimately maintain the infor-
mation of the complete H(G), since hard samples require
a larger : to approximate the original one. In long-tailed
distribution, the difficulties of samples varies a lot, which
losses the approximation abilities for hard samples. Therefore,
we propose Adaptive Label Compression (ALC) to adaptively
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Fig. 4. Illustration of class bias caused by label compression.

compress H(G) via the adaptive prediction set [50] on con-
formal predictions, as illustrated in Fig. 3.

First, let the size of the adaptive prediction set be denoted
as ((G;H , W), which is defined as follows.

((G;H , W) = min{2 2 [1, ] :
2’
9=1

H
> ( 9 ) (G) � W}. (11)

Then, the adaptive prediction set �W (G) is defined as

�W (G) B �(G;H , W) = {2 : >(2)  ((G;H , W)}. (12)

After acquiring �W (G), the adaptive label compression function
CALC is expressed as:

CALC (⌘ 9 ) =
(
⌘ 9 , if 9 2 �W ,
0, otherwise.

(13)

Based on �W (G), we keep the value of ⌘ 9 if 9 2 �W (G) and
set it to zero otherwise. In practice, W = 0.95 is sufficient to
compress the average size of CIFAR-100-LT to be less than
5, while maintaining 95% prediction information.

Note that during storage, for each selected position, two
numbers need to be stored, including the probability value
denoted as ?, and corresponding class label denoted as 9 .
However, since the value of ? ranges from 0 to 1, it is sufficient
to encode the two numbers as ? + 9 . Then, during decoding,
simply retrieve its integer and decimal parts.

Debias. After compression, as the model prediction more
prefers majority classes, the minority classes are more likely
to be excluded by �W . Thus, the compressed H(G) would
exhibit more bias towards the majority, leading to a higher g⇤
in Eq. (3).

Formally, note that it always holds that the expected
distribution of ground-truth X8, 9 of Eq. (6) is identically equal
to ?B (H). Besides, without label compression, the expected
distribution of H(G) on the training set approximates ?B (H):

?̂B (H) = EG [H (G)] = EG [ ?̂B (H |G; \4�1)] ⇡ ?B (H), (14)

Consequently, the expectation distribution of T (G), obtained
by linearly combining the two terms in Eq. (6) with the same

TEMPLATE OF IEEE TRANSACTIONS 10

Fig. 8. Comparison of recognition accuracy on test time shifted long-tailed datasets.

Fig. 9. The KL divergence between EG [ ?̂C (H |G; \ ) ] and ?C (H) on test time shifted datasets with PC-Softmax.

Fig. 10. Comparison of calibration results using reliablility diagrams. We
additionally plot the confidence distribution with red lines. Upper: CE.
Lower: Ours.

E. Further Analysis

Optimal g. For the PC-Softmax, g = 1 has been proved to
be optimal in theory [4]. However, the optimal g for the target
distribution is often larger than 1, which indicates skewed
predictions. In Fig. 6(a) and Fig. 6(b), we show that the g

⇤ of
PCL is much closer to 1 compared to CE, which means our
method learns a better ?̂B (H |G) that is more consistent with
theory. Besides, we visualize the difference of introducing the
ECD for ComPCL in Fig. 6(c). The results indicate that relying
solely on label compression can cause obvious g value shifts,
but the debias operation effectively remove the bias without
re-adjusting g.

Combination with RIDE. Our method can serve as a plug-
and-play module for existing methods. Here we incorporate
our method into the ensemble method [37]. When combined

Fig. 11. The influence of U on classification error rate and expected
calibration error (ECE) on CIFAR-100-LT.

with multiple experts, there could be multiple practical ways
to construct ) (G):

(1) Ensemble: using the ensemble of all experts.
(2) Shift: learning from shifted (nearby) experts.
(3) RandShift: learning from randomly shifted experts, i.e.

shifting the experts randomly for each iteration.
(4) Independent: training each expert independently with-

out interactions among experts.
We demonstrate the framework of these strategies in Fig. 7.
In Fig. 6(d), we compare the performance of different

strategies on CIFAR-100-LT and ImageNet-LT with the orig-
inal RIDE. The results show that our method achieves better
performance than the original RIDE with cross-entropy loss,
which again proves the effectiveness of our method.

Notably, we observe that the first three strategies yield sub-
optimal results, which is somewhat counter-intuitive. Despite
the better performance of the ensemble predictions in (1), it
does not lead to better improvement for PCL. We attribute this
to the diverse predictions generated by different experts. As
discussed in Sec. III-C, for tail classes with high predictive
uncertainty, the predictions of nearby experts may exhibit
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Fig. 6. (a) Accuracy on CIFAR-10-LT with varying g. (b) Accuracy on CIFAR-100-LT with varying g. (c) Comparison of accuracy with / without using
ECD debias on CIFAR-100-LT with varying g. (d) Comparison of accuracy for different ensemble strategy for PCL on CIFAR-100-LT (200 epochs) and
ImageNet-LT (90 epochs).

similarly effective debiasing without the need for extra data
and incurs minimal computational overhead.

D. Comparison with Related Baselines
For better understanding of PCL, we conduct experiments

with some related baselines.
• Label Smoothing (LS): A regularization technique that in-

troduces slight uncertainty by interpolating between one-
hot targets and uniform targets using a smoothing factor,
which mitigates over-confidence issue during training.

• Class-Wise Label Smoothing (CW-LS): Similar to LS,
but tailoring different smoothing factors individually to
different classes. Similar technique is adopted by [24].

• Class-Mean PCL (CM-PCL): In CM-PCL, soft targets are
composed by retaining the mean predictions per class,
as opposed to storing the per-sample predictions utilized
in the original PCL. Different from CW-LS, CM-PCL
determines the smoothing factors based on the model’s
own predictions.

• False-Only PCL (FO-PCL) and Correct-Only PCL (CO-
PCL): Only applying PCL on the falsely classified sam-
ples or correctly classified samples.

• PSKD: PCL shares some similarities with the prior work
[49] in the idea of utilizing historical predictions. How-
ever, PCL differs from PSKD in several aspects, including
the scheduling of U, aggregation of predictions, ALC
compression, and ECD debias.

The results of these baselines are listed in Fig. 5(d).
Compared with these baselines, PCL achieves the best per-
formance. There are some observations: (1) The LS, CW-
LS, CM-PCL cannot even achieve better performance than
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Fig. 7. Different possible strategies of generating T(G ) for RIDE.

CE, which highlights the importance of sample-wise soft
targets adpoted in PCL. (2) Compared to CO-PCL, FO-PCL
exhibits a more significant improvement in accuracy, which
also validates our hypothesis that PCL achieves improvement
by constraining the predictive probabilities of hard samples.
(3) PCL outperforms all other baselines including the strong
PSKD by a significant margin, demonstrating the effectiveness
of the proposed method.
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Fig. 9. The KL divergence between EG [ ?̂C (H |G; \ ) ] and ?C (H) on test time shifted datasets with PC-Softmax.
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