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1 Learning with Ensemble
Our method can serve as a plug-and-play module for existing methods. Here we incorporate
our method into the ensemble method [2]. When combined with multiple experts, there
could be multiple practical ways to construct T (x): (1) Ensemble: using the ensemble of
all experts. (2) Shift: learning from shifted (nearby) experts’ predictions. (3) RandShift:
learning from randomly shifted experts, i.e. shifting the experts randomly for each iteration.
(4) Independent: training each expert independently without interactions among experts.
We demonstrate the framework of these strategies in Fig. 1.
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Figure 1: Demonstration of different possible strategies of generating T (x) for RIDE.

In Tab. 1, we compare the performance of different strategies on CIFAR-100-LT and
ImageNet-LT with the original RIDE. The results show that our method achieves better per-
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formance than the original RIDE with cross-entropy loss, which again proves the effective-
ness of our method.

Notably, we observe that the first three strategies yield sub-optimal results, which is
somewhat counter-intuitive. Despite the better performance of the ensemble predictions in
(1), it does not lead to better improvement for PCL. We attribute this to the diverse predic-
tions generated by different experts. As discussed in Sec. 3.2, for tail classes with high
predictive uncertainty, the predictions of nearby experts may exhibit inconsistencies with the
current expert, thereby negatively impacting the probabilistic estimation of p̂(y|x).

Table 1: Comparison of different strategies of generating T (x) for RIDE.

Strategy RIDE-CE Ens Shf RShf Ind

CIFAR-100-LT 49.5 50.2 50.6 50.6 50.8
ImageNet-LT (90 epochs) 54.1 54.4 54.3 54.4 54.8

2 More Results

2.1 Test Time Distribution Shift
We further compare our method with baselines on different datasets under various training
distributions and test-time distribution shifts. In this comparison, we employ two different
post-hoc correction methods, namely the additive correction (PC-Softmax) [1] and the mul-
tiplicative correction (CDT) [3]. It is worth noting that the original CDT is not a post-hoc
method. Instead, it introduces a class-dependent temperatures ac to the loss:

LCDT ( fθ (x), i) =− log
e fθ (x)[i]/ai

∑c e fθ (x)[c]/ac
, (1)

where ay = (N1/Ny)
τ and τ is a hyper-parameter. To convert CDT into a post-hoc method,

we consider the pt(y) and introduce the at
c = (Mmax/Mc)

τ temperature for target distribution.
Then, we reverse the sign of the temperatures and apply it to the test predictions similar to
PC-Softmax. Consequently, the post-hoc version of CDT is given by:

argmaxc fθ (x)[c] ·ac/at
c. (2)

The results are demonstrated in Fig. 2. As shown, PCL improves both the multiplicative
correction and additive correction over all test distributions. Specifically, the advantage of
PCL over CE is even larger under large label distribution shift (backward regions). Note that
multiplicative correction is generally less effective than additive correction, indicating that
additive correction is a better solution for post-hoc correction for long-tailed classification.

2.2 Expected Predictions
In Fig. 1 of the main text, we illustrate the mismatch between the label distribution pt(y)
and average prediction Ex[ p̂t(y|x;θ)]. In this analysis, we quantify the mismatch with the
KL divergence between them. As depicted in Tab. 2, the KL divergence gradually increases
as the test distribution shift becomes larger (from left to right). This indicates that the ap-
proximation becomes less accurate due to more severe label distribution shift. Compared to
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Figure 2: Comparison of recognition accuracy on test time shifted long-tailed datasets.

the baseline, our method achieves much lower KL divergence, indicating that our method
produces better predictions.

Table 2: The KL divergence between Ex[ p̂t(y|x;θ)] and pt(y) on test time shifted datasets
with PC-Softmax.

CIFAR-10-LT Forward Uniform Backward

Imbalance ratio 50 25 10 5 2 1 2 5 10 25 50

CE ×10−2 0.25 0.34 0.55 0.77 1.13 1.44 1.85 2.42 2.83 3.12 3.19
Ours ×10−2 0.13 0.13 0.15 0.17 0.19 0.20 0.24 0.30 0.34 0.39 0.43

CIFAR-100-LT Forward Uniform Backward

Imbalance ratio 50 25 10 5 2 1 2 5 10 25 50

CE ×10−2 1.32 1.46 1.78 2.19 2.91 3.51 4.37 5.51 6.27 7.05 7.49
Ours ×10−2 0.42 0.42 0.43 0.45 0.52 0.60 0.76 0.99 1.16 1.35 1.45

ImageNet-LT Forward Uniform Backward

Imbalance ratio 50 25 10 5 2 1 2 5 10 25 50

CE ×10−2 2.46 2.43 2.43 2.49 2.62 2.77 3.15 3.65 3.97 4.29 4.49
Ours ×10−2 1.06 1.02 1.03 1.09 1.21 1.35 1.59 1.85 2.00 2.14 2.17

Places-LT Forward Uniform Backward

Imbalance ratio 50 25 10 5 2 1 2 5 10 25 50

CE ×10−2 1.11 1.15 1.18 1.23 1.32 1.41 1.49 1.64 1.73 1.88 1.98
Ours ×10−2 0.66 0.69 0.70 0.73 0.80 0.85 0.97 1.12 1.22 1.42 1.49

3 Details of Hyperparameters

In Tab. 3, we summarize the hyperparameters and implementation details for different datasets.
Besides, the EMA factor β is set to 0.999 for PCL and 1.0 for ComPCL. The value of cov-
erage level γ depends on the degree of compression, which represents a tradeoff between
accuracy and compression ratio. We simply set γ to 0.95 in the experiments.
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Table 3: Summary of the hyperparameters and implementation details used in our method.
Dataset ImageNet-LT Places-LT CIFAR-10-LT CIFAR-100-LT

Imbalance ratio 256 996 {10,50,100} {10,50,100}

Network

Backbone ResNet-50 ResNet-152 ResNet-32 ResNet32
Classifier Cosine Cosine Linear Linear
Pretrain - ImageNet - -

Training

Epochs 90 / 200 30 200 200
Batch Size 256 128 256 256

Learning Rate 0.1 0.001 & 0.1 0.2 0.2
LR Schedule Cosine Cosine Step Step

Weight Decay Factor 5×10−4

Method

α 0.7 0.4 {0.8,0.9,0.9} {0.7,0.8,0.9}
λ 0.3 0.1 {0.4,0.4,0.5} {0.6,0.6,0.6}

References
[1] Youngkyu Hong, Seungju Han, Kwanghee Choi, Seokjun Seo, Beomsu Kim, and Buru

Chang. Disentangling label distribution for long-tailed visual recognition. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 6626–6636, 2021.

[2] Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu, and Stella X Yu. Long-
tailed recognition by routing diverse distribution-aware experts. arXiv preprint
arXiv:2010.01809, 2020.

[3] Han-Jia Ye, Hong-You Chen, De-Chuan Zhan, and Wei-Lun Chao. Identifying and
compensating for feature deviation in imbalanced deep learning. arXiv preprint
arXiv:2001.01385, 2020.


