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MRAE RMSE MRAE RMSE
MSA 0.1120 0.0420 0.2420 0.0512
N-LISA 0.0669 0.0158 0.1767 0.0301

The motivation to propose Lips-SpecFormer is to overcome the limitations of using spectral
wise self-attention to learn spectral dependencies. Firstly, To apply self-attention along
the spectral dimension on the X € R™W*C shaped feature map, the corresponding
spectral attention coefficient using estimated key K € R“*#W and query Q € R¢*H#W
is computed as A;; = é[:vg—l Qi’kK,Zj. It squeezes the spatio-spectral context between
two channels to a single scalar value éausing the information loss. Second,the L, Lips-
chitz constant of self-attention is bounded by the variance of the input resulting in larger

sensitivity.
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Table 1. Quantitative results for different attention layers.
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Table 2. Some of 2-Lipschitz constant for spectral self-attention of MST for different perturbed channel.
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Figure 1. A: End-to-end transformer network. B: MSSSFB-C: Multi-Scale Spatio Spectral Feature Block ]
with C number of input channels. C: Transformer block with C number of input channels. D: N-LISA: Adversarial Robustness
Non-Linear Interpolable Spectral Attention architecture. E: Architecture of spectral attention using
N-LISA.

From previous studies such as Zhang et. al. [5], it is known that Lipschitz stability also
imparts adversarial robustness. Therefore, we evaluate the performance of three trans-
former architectures for Fast Gradient Sign Method (FGSM) and Projected Gradient

Lipschitz constant of N-LISA
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Figure 3. Comparison of adversarial robustness under FGSM and PGD-20 attacks.

Poster Session



	Lipschitz stability

