

BMVC Semantic Adversarial Attacks via Diffusion Models

Chenan Wang¹, Jinhao Duan¹, Chaowei Xiao², Edward Kim¹, Matthew Stamm¹, Kaidi Xu¹ ¹Drexel University, ²University of Wisconsin - Madison

cw3344@drexel.edu

Background: Diffusion Models

reverse / sampling process

- Forward process gradually adds noise to data over time steps
- Reverse process trained to remove noise over time steps
- Sampling starts from noise and runs reverse process
- Applications includes image, audio, and text generation

The image is from Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in neural information processing systems, 33, 6840-6851.

Background: Semantic Attacks

Manipulate high-level semantic features of images, not just pixel values

(*Magpie* 75.6%)

- Make perceptually realistic changes to content and meaning
- Perturbations may not be norm-bounded or imperceptible
- Examples: adding/removing objects, changing color schemes, swapping backgrounds

The image is from Na, D., Ji, S., & Kim, J. (2022, October). Unrestricted Black-Box Adversarial Attack Using GAN with Limited Queries. In European Conference on Computer Vision (pp. 467-482). Cham: Springer Nature Switzerland.

Method: ST Approach

- Fine-tunes latent space and/or diffusion model parameters
- Makes minimal semantic changes to fool classifier
- Can work in white-box or black-box setting
- Achieves high attack success rate
- White-box variant has better fidelity

(a) white-box attack (b) black-box attack

Method: LM Approach

- Masks latent space with significance maps
- Transplants features from original and/or target image
- Fast method without fine-tuning diffusion model
- Achieves high attack success rate
- GradCAM gives slightly better fidelity than SimpleFullGrad
- More direct manipulation of latent space

Experimental Results

Setting	strategy	ASR (%)↑	FID↓	KID↓	average query↓	average time (s)
clean images	=	_	30.67	0.000	_	H
LatentHSJA	-	100.0	83.52	0.046	1000 [†]	45.87
AttAttack	-	71.80	48.92	0.018	146.82	49.71
		ST appro	ach			
fine-tune	white-box	100.0	37.93	0.014	7.72	37.10
latent space	black-box	59.18	114.99	0.098	43.15	206.13
fine-tune	white-box	99.2	36.61	0.006	4.98	30.78
diffusion model	black-box	100.0	96.88	0.068	11.73	66.57
fine-tune both	white-box	99.4	36.66	0.006	4.96	30.78
	black-box	100.0	94.36	0.066	11.672	64.97
		LM appro	ach			
GradCAM	$\mathbf{\hat{m}}_{\scriptscriptstyle \mathcal{S}}(\boldsymbol{\delta})$	98.8	65.84	0.015	15.33	20.96
	$\mathbf{\hat{m}}_t(\mathbf{\delta})$	99.2	64.38	0.014	15.21	18.89
	$\mathbf{\hat{m}}_{s+t}(\mathbf{\delta})$	99.0	65.47	0.014	14.65	20.81
SimpleFullGrad	$\mathbf{\hat{m}}_{s}(\boldsymbol{\delta})$	99.6	67.10	0.016	16.17	24.03
	$\hat{\mathbf{m}}_t(\boldsymbol{\delta})$	99.6	65.21	0.016	15.32	27.48
	$\mathbf{\hat{m}}_{s+t}(\boldsymbol{\delta})$	99.8	65.67	0.015	14.73	23.77

Elapsed time varies, depending on the query steps, which is preset by the user.

Table 1. Performance of ST and the LM approach on CelebA-HQ dataset.

- The ST approach achieves near 100% attack success rate (ASR) in all settings, with the white-box variant having better fidelity (lower FID/KID scores).
- Fine-tuning the diffusion model alone gives the best FID of 36.61 under whitebox ST.
- The LM approach also gets high ASR, with GradCAM giving slightly better fidelity than saliency maps.
- Both ST and LM are much more efficient than the LatentHSJA and AttAttack baselines.

LatentHSJA: Na, D., Ji, S., & Kim, J. (2022, October). Unrestricted Black-Box Adversarial Attack Using GAN with Limited Queries. In European Conference on Computer Vision (pp. 467-482). Cham: Springer Nature Switzerland. AttAttack: Joshi, A., Mukherjee, A., Sarkar, S., & Hegde, C. (2019). Semantic adversarial attacks: Parametric transformations that fool deep classifiers. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 4773-4783).

Experimental Results

Figure 1. Transfer attack results on LatentHSJA, AttAttack, our ST and LM approach.

- We evaluate transferability of semantic adversarial attacks by generating examples to fool a ResNet18 classifier and testing them against 3 other models.
- Black-box ST approach transfers the best, maintaining high attack success rates on other models since it does not require the target model's information.
- White-box attacks tend to overfit to the target model so do not transfer as good as Black-box attacks.