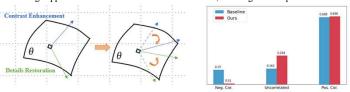
Frequency-Consistent Optimization for Image Enhancement Networks

Bing Li, Naishan Zheng, Qi Zhu, Jie Huang, Feng Zhao University of Science and Technology of China

Introduction

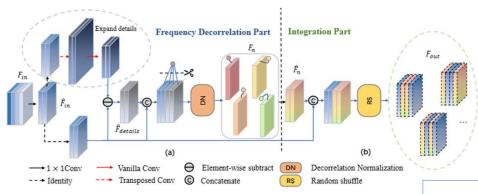
Motivation:

- > Image enhancement aims at enhancing the overall contrast (low frequency) while reconstructing details (high frequency). Existing studies typically achieve these two objectives with a heuristically constructed complex architecture (i.e., two-stage or two-branch).
- > However, the complex designs result in unsatisfactory flexibility and transferability. What's more, two-stage approaches lead to the accumulation of errors, resulting in sub-optimization.



- > Our aims is to perform the image enhancement task within a single-stage and single-branch network.
- > However, directly employing a single network to optimize the two objectives simultaneously will lead to an optimization conflict.
- > To alleviate this problem, we construct a frequency-independent feature space for maintaining optimization consistency

Method



feature space with (a) a frequency decorrelation part and (b) an integration part. The frequency decorrelation part maps

> The overview of our proposed FDI module,

which formulates a frequency-independent

frequency-dependent features to the frequency-independent features.

The integration part compensates for the information loss caused by decorrelation normalization, which introduces a random channel shuffle operator to reduce the sensitivity to frequency during the training process.

The plug-in strategy

Experiments

Figure 4: Visual comparison on LOL dataset. M-SID and M-MPRNet denote SID and MPR-Net incorporated with the proposed FDI module by strategy (ii) mentioned in Sec. 3.4.

(b) Fusion

Decorrelation Normalization (DN): given the input features $X \in \mathbb{R}^{C \times HW}$, we perform DN by:

 $\mu = \frac{1}{m\nu} X \cdot \mathbf{1} \qquad \Sigma = \frac{1}{m\nu} (X - \mu \cdot \mathbf{1}^T) (X - \mu \cdot \mathbf{1}^T)^T \quad \hat{X} = \Sigma^{-\frac{1}{2}} (X - \mu \cdot \mathbf{1}^T)$

(h) MPRNet Figure 5: Visual comparison on UIEB dataset.

Method	Fusion	Water-Net	PUIE-Net(MC)	MLLE	UIEC^2	M-UIEC^2	MPRNet	M-MPRNet
PSNR(↑)	21.47	18.92	22.09	18.58	21.41	22.27(+0.86)	21.33	23.39(+2.06)
SSIM(†)	0.8739	0.8533	0.8441	0.7706	0.9357	0.9433(+0.0076)	0.9154	0.9387(+0.0233)
LPIPS(1)	0.158	0.158	0.156	0.312	0.128	0.125(+0.003)	0.178	0.147(+0.031)
#Param	N/A	4.16M	61.5M	N/A	2.05M	2.32M	17.5M	18.2M

Table 1: Quantitative results on LOL dataset. The best results are highlighted in bold.

Method	RetinexNet	KinD	KinD++	RUAS	DRBN	EnlightenGAN	SCI
PSNR(†)	16.77	20.87	18.97	18.23	19.86	17.48	14.78
SSIM(†)	0.5671	0.7988	0.8441	0.7170	0.8342	0.7330	0.6350
LPIPS(1)	0.474	0.207	0.175	0.257	0.155	0.306	0.3334
#Param	0.62M	8.03M	9.63M	45K	2.21M	8.64M	43k
Method	SID	SID-L	M-SID	MPRNet	MPRNet-L	M-MPRNet	LEDNet
PSNR(†)	19.16	18.99	21.07(+1.91)	20.13	20.22	21.59(+1.46)	20.94
SSIM(†)	0.7862	0.8242	0.8360(+0.0498)	0.8170	0.8095	0.8512(+0.0342)	0.8506
LPIPS(1)	0.440	0.258	0.227(+0.213)	0.266	0.261	0.154(+0.112)	0.2609
#Param	29.6M	118M	35.1M	17.5M	34.3M	18.2M	28.4M
Method	LEDNet-FDI	Restormer	Restormer-FDI	NAFNet	NAFNet-FDI	IAT	IAT-FDI
PSNR(†)	21.59(+0.65)	20.67	20.79(+0.12)	22.44	22.79(+0.35)	23.38	23.59(+0.21)
SSIM(†)	0.8618(+0.0112)	0.8193	0.8212(+0.0019)	0.8608	0.8620(+0.0012)	0.8675	0.8704(+0.0029)
LPIPS(1)	0.2484(+0.0125)	0.2145	0.2107(+0.0038)	0.1482	0.1467(+0.0015)	0.2158	0.2049(+0.0109)
#Param	28.7M	99.8M	102.9M	65.5M	71.0M	0.41M	0.43M

Table 4: Quantitative results on LOL dataset. H-, R-, and M- denote incorporating the FDI module at the head, rear, and middle of networks, respectively.

Method	PSNR(†)	SSIM(†)	LPIPS(1)	#Param(M)
SID	19.16	0.7862	0.439	29.6
H-SID	19.24(+0.08)	0.7846(-0.0016)	0.288(+0.218)	29.6
R-SID	20.18(+1.02)	0.8330(+0.0468)	0.221(+0.218)	29.6
M-SID	21.07(+1.91)	0.8360(+0.0498)	0.227(+0.212)	35.1
MPRNet	20.13	0.8170	0.266	17.5
H-MPRNet	20.72(+0.59)	0.8040(-0.0130)	0.259(+0.007)	17.6
R-MPRNet	20.63(+0.50)	0.8192(+0.0022)	0.231(+0.035)	17.6
M-MPRNet	21.59(+1.46)	0.8512(+0.0342)	0.154(+0.112)	18.2

Ablations

Table 5: Ablation study with decorrelation normalization on LOL dataset.

Method	PSNR(†)	SSIM(†)	LPIPS(↓)
baseline	20.13	0.8170	0.266
LN	21.14(+1.01)	0.8281(+0.0111)	0.204(+0.062)
IN	21.10(+0.97)	0.8330(+0.0208)	0.208(+0.058)
PCA	19.51(-0.62)	0.8241(+0.0071)	0.191(+0.075)
ZCA	21.59(+1.91)	0.8360(+0.0498)	0.154(+0.112)

Table 3: Ablation study for investigating the components of the FDI module. DN, DE, and RS stand for Decorrelation Normalization, Details Expanding, and Random Shuffle, respectively.

DN	DE	RS	PSNR (†)	SSIM(†)	LPIPS(1)
			20.13	0.8170	0.266
	1	1	20.37	0.8199	0.250
1		1	20.82	0.8202	0.243
1	1		20.61	0.8243	0.244
1	1	1	21.59	0.8512	0.154

Normalization	LN	PCA	ZCA	Expand	down-up	up-down
PSNR(dB)↑	21.14	19.51	21.59	PSNR(dB)↑	21.02	21.59
SSIM	0.8281	0.8241	0.8512	SSIM↓	0.8239	0.8512
LPIPS	0.204	0.191	0.154	LPIPS↓	0.190	0.154

Table 2. Ablation studies with decorrelation normalization and expand operator on LOL dataset (using MPRNet as the backbone).

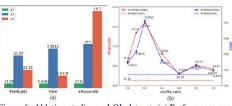


Figure 6: Ablation studies on LOL dataset. (a) Performance versus expanding resolution; (b) performance versus shuffle ratio.

Conclusions

- > We point out the optimization inconsistency between contrast enhancement and texture restoration in image enhancement. To this end, we construct a frequency-independent feature space with a Frequency Decorrelation and Integration (FDI) module.
- > Within the FDI module, we design a frequency decorrelation part for mapping features to a frequencyindependent space, and an integration part for reducing the sensitivity to the frequency during the optimization process.
- > Our FDI module is general and can be integrated into the existing image enhancement methods with negligible parameters. Extensive experiments demonstrate consistent performance gains by introducing our proposed module.