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1 Model Architecture

In this section, we provide a detailed description of the baseline architectures that were
incorporated with the FDI module in our study.

MPRNet. MPRNet [7] has achieved remarkable success as a multi-stage architecture
for progressive image restoration. Nevertheless, our primary purpose was to leverage the
capabilities of straightforward single-stage networks. As a result, we selected only the first
stage of the MPRNet as a baseline for comparison. Additionally, we opted to omit the
application of multi-patch hierarchy on the input image. Instead, our input consists solely of
the original image, while the output represents the final enhanced image.

SID. We simply modified the ConvNet of the SID [2] by reducing the number of input
and output channels to 3 as a baseline, as it is a standard U-Net architecture.

UIEC^2. UIEC^2 [6] is a representative end-to-end trainable network architecture for
underwater image enhancement tasks, which consists of three blocks: an RGB pixel-level
block, an HSV global-adjust block, and an attention map block. Despite being a multi-branch
architecture, we have chosen UIEC^2 as our baseline to demonstrate the effectiveness of
our proposed plug-and-play module. Specifically, we incorporate three FDI modules in the
middle of each of the three blocks mentioned earlier. By comparing our method against the
UIEC^2 baseline, we aim to highlight the benefits and advancements that can be achieved in
the context of complex multi-branch networks.
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Figure 1: Visulation of Feature Spectra. Row 1, the spectra of the original features (Fin);
row 2, the spectra of the reduced original features (F̂in); row 3, the spectra of the reduced
decorrelated features (F̂n). Note that Fin is the input features of FDI module while F̂in and F̂n
are the output features. It is evident that following the FDI processing, the output features
exhibit a combination of frequency-independent features, characterized by a consistent re-
sponse across different frequencies, as well as the original frequency-dependent features.

2 Visulization of Feature Spectra
In this section, we present the spectra of the features before and after the FDI module.
Fig. 1 illustrates the observed changes in the spectra. It is evident that following the FDI
processing, the output features exhibit a combination of frequency-independent features,
characterized by a consistent response across different frequencies, as well as the original
frequency-dependent features. This demonstrates that the FDI module introduces frequency-
independent components while preserving the inherent frequency-dependent characteristics
to the output features. The incorporation of both types of features contributes to a more
comprehensive representation of the data, facilitating improved enhancement results. Note
that we have separately normalized each spectrum for visual clarity.

3 Additional Ablation Studies
In this section, we conducted additional ablation experiments in order to demonstrate the ra-
tionality of the components of the FDI module. We list our additional ablation configurations
as follows:

1). The effectiveness of Frequency Decorrelation Part: We exclusively employed the
random shuffle operation as the plug-in module to investigate the performance of Frequency
Decorrelation Part. 2). The effectiveness of Integration Part: To demonstrate the crucial
role of integrating the initial information, we insert the FDI module into the baseline with-
out incorporating Integration Part. 3). The effectiveness of Decorrelation Normalization
(i.e. whitening): We replace the DN with the classic Instance Normalization [5] and PCA
whitening to prove the superiority of DN in the FDI module. 4). The effectiveness of up-
down expand operator: We replace the up-down operator with down-up-like ones.

As shown in Tab. 1, we can draw the following conclusions: 1). The exclusion of either
the Frequency Decorrelation Part or the Integration Part from our FDI module results in a
noticeable decline in performance, indicating that both parts of our FDI module design have
contributed to the performance improvement. 2). The utilization of solely random shuffle
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Table 1: The ablation studies on the LOL dataset. The best results are highlighted in bold.
Baseline Method PSNR(↑) SSIM(↑) LPIPS(↓)

baseline 19.16 0.7862 0.440
w/o Frequency Decorrelation part 17.52 0.8102 0.258

SID w/o Integration part 19.71 0.8232 0.230
replace DN with IN 20.28 0.8284 0.234
w/ FDI (ours) 21.07 0.8360 0.227
baseline 20.13 0.8170 0.266
w/o Frequency Decorrelation part 18.72 0.8053 0.269

MPRNet w/o Integration part 20.85 0.8456 0.207
replace DN with IN 21.10 0.8378 0.208
replace ZCA with PCA 19.51 0.8241 0.191
replace up-down with down-up 21.02 0.8239 0.190
w/ FDI (ours) 21.59 0.8512 0.154

(a) 𝐹𝑑𝑒𝑡𝑎𝑖𝑙𝑠 (Down-Up) (b) 𝐹𝑑𝑒𝑡𝑎𝑖𝑙𝑠 (Up-Down)

Figure 2: Fdetails feature map of compared down-up (less details) and our used up-down
(more details) in expand operator.

operation results in a significant performance decrease in performance, even worse than the
baseline. We attribute this performance drop to the inherent instability introduced by ran-
dom shuffle during training, leading to suboptimal results. However, when both the DN and
random shuffle are employed, performance improvement is observed. In this case, random
shuffle helps prevent the network from being biased toward specific features, thereby en-
hancing the influence of the DN during training. 3). The absence of Integration part does not
lead to a performance decline compared to the baseline. This is because the skip connections
employed by SID and MPRNet, which combine deep features with shallow features, miti-
gate the information loss caused by the FDI module. However, it is important to note that
while the skip connections can compensate for some information loss, the application of the
Integration is still necessary to complement the information at the FDI insertion layer. 4). By
replacing DN with IN in the FDI module, there is also a performance enhancement compared
to the baseline. This improvement further implies the effectiveness of other designs of our
module. Additionally, the FDI module with DN outperforms the FDI with IN, emphasizing
the importance of the decorrelation capability introduced by DN in the optimization process.
In summary, all the key designs contribute to the best performance of the module.

To further substantiate the superiority of our design, we visualize feature maps to demon-
strate the indispensability of the up-down expand operator and random shuffle operator. As
shown in Fig. 2, the up-down expand operator extracts more texture details compared to the
down-up substitute. As observed in Fig. 3,the FDI with random shuffle in training achieves
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(a) activations of 1.png

training w/o shuffle
std:0.0339

training w/ shuffle
std:0.0203

(b) activations of 778.png

training w/ shuffle
std:0.0184

training w/o shuffle
std:0.0388

Figure 3: FDI layer channel activations during testing when training with shuffling or not.
The activations have a lower standard deviation when applying the shuffle operator during
training

more stable activations (lower deviation) across channels (means less biased to specific chan-
nels).

4 Additional Qualitative Results
In this section, we provide more qualitative results. Fig. 4, Fig. 5, Fig. 6, and Fig. 7 are
visual results on the LOL dataset. We additionally introduced Zero-DCE++ [4] for visual
comparison. Fig. 8, Fig. 9, Fig. 10, and Fig. 11 are visual results on the UIEB dataset. We
can observe that other methods tend to exhibit color shifts or artifacts, while our methods
can achieve consistently satisfactory visual results.

5 Retouching Bechmark
We evaluate the proposed module on the Five-K [1] dataset for the retouching task. We select
MPRNet and CSRNet [3] as the baseline, and the evaluation is shown in Tab. 2 and shows
FDI’s effectiveness.

Table 2: Quantitative comparison on five-K dataset.
Method MPRNet MPRNet-FDI CSRNet CSRNet-FDI

PSNR(dB)↑ 22.58 23.13(+0.55) 23.57 23.81(+0.24)
SSIM↑ 0.9289 0.9385(+0.0096) 0.9394 0.9415(+0.0021)
LPIPS↓ 0.0786 0.0702(+0.0084) 0.0749 0.0708(+0.0041)
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MPRNet(l) MPRNet-L(m) M-MPRNet(Ours) (n) GT(o)Zero-DCE++(k)

Figure 4: Visual comparison of different LLE methods on the LOL dataset.
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Input(a) RetinexNet(b) DRBN(c) KinD(d) KinD++(e)

RUAS(f) EnlightenGAN(g) SID(h) SID-L(i) M-SID(Ours) (j)

MPRNet(l) MPRNet-L(m) M-MPRNet(Ours) (n) GT(o)Zero-DCE++(k)

Figure 5: Visual comparison of different LLE methods on the LOL dataset.

Input(a) RetinexNet(b) DRBN(c) KinD(d) KinD++(e)

RUAS(f) EnlightenGAN(g) SID(h) SID-L(i) M-SID(Ours) (j)

MPRNet(l) MPRNet-L(m) M-MPRNet(Ours) (n) GT(o)Zero-DCE++(k)

Figure 6: Visual comparison of different LLE methods on the LOL dataset.
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Input(a) RetinexNet(b) DRBN(c) KinD(d) KinD++(e)

RUAS(f) EnlightenGAN(g) SID(h) SID-L(i) M-SID(Ours) (j)

MPRNet(l) MPRNet-L(m) M-MPRNet(Ours) (n) GT(o)Zero-DCE++(k)

Figure 7: Visual comparison of different LLE methods on the LOL dataset.

PUIE-Net(MC) (d) MLLE (e)Water-Net (c)Fusion (b)Input (a)

M-MPRNet(Ours) (i) GT (j) UIEC^2 (f) M-UIEC^2(Ours) (g) MPRNet (h)

Figure 8: Visual comparison of different UIE methods on the UIEB dataset.



8 B. LI, N. ZHENG, F. ZHAO: FREQUENCY-CONSISTENT OPTIMIZATION FOR IENS

PUIE-Net(MC) (d) MLLE (e)Water-Net (c)Fusion (b)Input (a)

M-MPRNet(Ours) (i) GT (j) UIEC^2 (f) M-UIEC^2(Ours) (g) MPRNet (h)

Figure 9: Visual comparison of different UIE methods on the UIEB dataset.

PUIE-Net(MC) (d) MLLE (e)Water-Net (c)Fusion (b)Input (a)

M-MPRNet(Ours) (i) GT (j) UIEC^2 (f) M-UIEC^2(Ours) (g) MPRNet (h)

Figure 10: Visual comparison of different UIE methods on the UIEB dataset.

PUIE-Net(MC) (d) MLLE (e)Water-Net (c)Fusion (b)Input (a)

M-MPRNet(Ours) (i) GT (j) UIEC^2 (f) M-UIEC^2(Ours) (g) MPRNet (h)

Figure 11: Visual comparison of different UIE methods on the UIEB dataset.


