LOW ET AL.: SLACKEDFACE 13

Supplementary Materials

We offer additional resources in this section to enhance the understanding and reproducibility
of this work. To summarize, our supplementary materials are presented as follows:

. Theoretical Analysis

. Benchmarking Datasets

A
B
C. Hyperparameter Analysis and Configuration
D. Stability Analysis

E

. Model Extension

A. Theoretical Analysis

We provide the mathematical proofs for the conceptual principles that underlie SlackedFace,
including the role of (1) slacked margin, and (2) regularization term. To simplify our analy-
sis, we omit normalization procedures and subscript indexes.

Al. Slacked Margin

Assumption. A face example, either easy or hard, is ranked recognizable, if and only if two
conditions are satisfied: (1) its embedding magnitude ||z|| > Tporm, and the Cosine similarity
between z and its true identity prototype cos 8y > Tcosine-

Therefore, a high recognizability example has a large embedding magnitude and a large
similarity score, while an unrecognizable example is deficient at both. We first show that the
SlackedFace margin is proportional to these recognizability factors.

Proposition 1. (Slacked margin) The slacked margin m = 6'9=P is monotonically strictly
increasing with respect to ||z|| and cos 0, if ||z|| < T and 60,4+ m < 7/2.

SlackedFace, hence, can accurately induce a margin that corresponds to recognizability, re-
sulting in a model that produces a significantly large gradient update on recognizable exam-
ples and a small gradient update on unrecognizable examples during training.

Corollary. (Gradient of SlackedFace Loss) The magnitude of SlackedFace loss gradient z%v

on the target similarity angle 6, is monotonically and strictly increasing with respect to |z |
and cos 0y, if ||z|| < T and 6y +m < 7/2.

Proof. Let L = —logexp(cos(8y +m))/[L..,exp(6y) +exp(6y +m)]. Then,

g-gy =[1- (k;yeXP(COS 6 — cos(8y +m))) "] sin(6, +m). (12)

Given 6y +m < /2, sin(6y +m) and Y, exp(cos 6; — cos(6y, +m)) are strictly increasing
with m. Similarly, the derivative of gTLy with respect to m is also strictly increasing. There-

fore, by the previous proposition, the gradient is also strictly increasing with embedding
magnitude and cosine similarity. O
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The above corollary demonstrates that the SlackedFace margin is highly correlated with
the recognizability of a face. This means that SlackedFace induces a smaller margin for
unrecognizable examples, and otherwise. As a result, SlackedFace can effectively promote
empowered embedding learning based on face recognizability.

A2. Regularization Term

In accordance with (9), the SlackedFace loss incorporates a regularization term L5 to max-
imize the embedding norm to an upper bound. We demonstrate that this improves learning
stability and convergence by enforcing the model to focus on minimizing the relative angle
between a face embedding and its true identity prototype.

Since SlackedFace is updated by a gradient-based optimizer, the gradient update for the

BL

embedding vector is performed by z < z — o= at a certain learning rate. Therefore,

aL,

learning of embedding vector is determined by the gradient =52 in (13). We analyze this

gradient as follows:
Proposition 2. For the classification loss L,

d ‘Ccl ass
oz

1 @ .
=T Zacgé“gi Wy — cos 6, Z) (13)

where Wy and Z are obtained by normalizing wy and z, respectively.

The proposition indicates that the gradlent ‘I“” for an embedding update is disentangled to

two terms, specifically, ||z|| "' and ¥, ac(‘)’;’g ( Wy — cos 6, Z), where the former depends on the
embedding norm and the latter does not. Slnce the regularization term reduces the reciprocal

of embedding magnitude, the regularizer makes the gradient less variant to the magnitude:

Corollary. Minimizing L, reduces the magnitude of the embedding gradient, thereby making
the embedding gradient invariant to embedding magnitude.

Overall, the regularization term serves two important roles: (1) preventing the overly
large gradient update, which helps to stabilize the training stage. (2) marking the embed-
ding learning more depend on the relative angle between face embeddings and true identity
prototypes. Increasing the angle-dependency of the embedding learning improves the gener-
alization of the corresponding cosine similarity metric for open-set applications [24].

B. Benchmarking Datasets

We further elaborate on our benchmarking datasets, including SCFace, TinyFace, and Drone-
Face, for performance evaluation under the open-set deployment scenario.

SCFace. Real-world face recognition systems enroll individuals using high-resolution (HR)
mugshots, leaving unseen (test) face images unrestricted. Hence, SCFace includes a gallery
set with a high-resolution (HR) mugshot per identity (ID), and three low-resolution (LR)
probe sets, namely D1, D2, and D3, to simulate a real-world HR (gallery)-LR (probe) iden-
tification task. As a whole, these probe sets are compiled with examples captured at standoff
distances of 4.20m, 2.60m, and 1.00m, respectively. In compliance with [19], we allocate
the first 50 subjects (from ID 01 to 050) for training, while the other 80 subjects (from ID
051 to 130) are reserved for testing.
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TinyFace. Contrary to SCFace, TinyFace is a large-scale LR face dataset with both an LR
gallery and an LR probe set for an LR-LR identification task. Overall, it is a composition of
7,804 / 8,171 face images annotated with 2,570 / 2,569 ID labels in each training and testing
set, respectively. On average, the pixel resolution of these examples is limited to only 20x 16
pixels. It is worth noting that its gallery search space is interfered with 153,428 distractors
of unknown identities to simulate a more challenging real-world scenario.

DroneFace. DroneFace, on the other hand, is only a test set for an HR-to-LR identification
task (similar to SCFace). As a whole, it consists of 11 subjects with 1,364 examples detected
from drone footage (at 1.5m to 5m high, and 2m to 17m away from the subjects) in the probe
set and 2 frontal mugshots per ID as the enrolled templates in the gallery set. We evaluate
the generalization performance on DroneFace using the SCFace-learned models.

Ad-Hoc Distractor Set. As both SCFace and DroneFace contain no distractors, we extend
these datasets with an ad-hoc distractor set of 20,000 unknown examples randomly sampled
from that of TinyFace.

We summarize the data distribution for each dataset in Table 3. On the other hand, we portray
10 hardest and easiest examples indexed by Norm and P-Norm in Figure 6.

Datasets Desc. Train. Set Gallery ‘ T;Srt(;bseet ‘ Distract. Eval. Protocol

SCFace ##Irllfgi. 85000 Zg 1;(())0 so000F | HRAOLR
TinyFace #ﬁ:l?gss. 5:2(7)2 ifuﬁtg 3323 55a08 | LRoLR
DroneFace ##lrlllljgss : ;; 1,1316 7 20, (;0 0% HR-to-LR

Table 3: Data distribution for our benchmarking datasets, including TinyFace, SCFace, and
DroneFace. Note that "*" refers to a random distractor set of 20,000 LR face images sampled
from that of TinyFace.

C. Hyperparameter Analysis and Configuration

Compared to other static margin-based softmax losses that involve two primary hyperparam-
eters, i.e., the scaling factor s and the margin term m, training a SlackedFace model requires
tuning two additional hyperparameters, specifically the degree of margin relaxation 7 in (8),
and the regularization weighting factor A in (9). Other default hyperparameters are the Sig-
moid steep slope A = 6.0 in (3), the generic upper bound for the embedding norm 7 = 10?
in (4), and the regression transition parameter ¥ = 0.5 in (10). Accordingly, we analyze
in Table 4 the effect of n and A, in addition to m. These are the key parameters to deter-
mine the generalization power of the SlackedFace models, achieving optimal performance
with and without distractors in the most difficult SCFace D1 probe set. We summarize our
hyperparameter configuration in Table 5.

D. Stability Analysis

To assess the model’s stability against random initializations, we train the SlackedFace mod-
els and the comparing instances using 5 random seeds, i.e., 0, 1, 42, 1234, and 2023. Our
experimental results in Table 6 reveal that the SlackedFace models exhibit the ideal robust-
ness to multiple random initializations, underlining that SlackedFace is a reliable alternative
to other non-static margin-based softmax losses.
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‘ Ori. / Ext. SCFace

Hyperparams. Setting ‘ BI ‘ D2 ‘ D3 ‘ Mean ‘
0.025 | 89.25/59.25 | 98.50/92.50 | 98.75/90.25 | 95.50/80.67
Effects of 1 0.05 | 89.50/60.25 | 98.25/93.00 | 98.25/90.25 | 95.33/81.17
(m—05:4—01) | 010 [ 900076075 [ 982579250 | 98.25/90.75 | 95.50/81.33
’ 0.15 | 89.25/61.00 | 98.00/92.25 | 98.25/89.50 | 95.17/80.92
0.20 | 88.50/58.00 | 98.00/92.00 | 98.25/90.25 | 94.92/80.08
0.0 | 88.75/59.75 | 98.50/93.00 | 97.75/90.25 | 95.00/81.00
Effects of 1. 0.05 | 89.757/61.00 | 98.25/92.25 | 98.50/90.00 | 95.55/81.08
(m= 0350‘5; o1y | 010 [ 90.00760.75 | 982579250 | 98.25790.75 | 955078133
020 | 89.25/62.25 | 98.25/93.00 | 98.75/89.75 | 95.42/81.67
050 | 88.25/61.50 | 98.50/92.25 | 98.25/90.00 | 95.00/81.25
040 | 90.00/59.75 | 98.25/90.75 | 98.50/89.25 | 95.58/79.92
Effects of m 045 | 90.00/60.00 | 98.50/92.00 | 98.50/89.75 | 95.67/80.58
(=01:A—01) | 050 | 900076075 | 982579250 | 98:25/90.75 | 95.50/8133
055 | 89.00/60.75 | 98.25/92.50 | 985079050 | 95.25/81.25
0.60 | 88.75/61.00 | 98.50/93.25 | 98.50/89.75 | 95.25/81.33

Table 4: Hyperparameter analyses for SlackedFace (using pre-trained MobileFaceNet as the
embedding encoder).

Hyperparameters SCFace ‘ TinyFace ‘
| MobileFaceNet | ResNet50 | ResNet50 |
Mini Batch Size 32 32 32
# Epochs ( Fast-HC + End-to-End ) 8+32 8+32 8+32
Learning Rate le ™ le ™ le ™
Basic Learning Rate Decay 0.1/8 epochs 0.1/4 epochs | 0.1/6 epochs
Weight Decay le ™ le ™ le ™
Dropout Rate 0.6 0.8 0.8
SlackedFace Sigmoid Steep Slope A in .(3)’ 6.0
( Default ) Upper Bound for Norm 7 in (4) 100
Regress. Transition Parameter. ¥ in (10) 0.5
Sl@ckedFace gf:clir;ihﬁmjglgm in (8)( . 60, 0.50
( Fine-Tuned ) gin Degree 1 in (8) 0.10
Reg. Weighting Factor A in (9) 0.10

Table 5: Overall hyperparameter configuration in our experiments. We set the learning rate
for the pre-trained backbone (inclusive of the embedding MLP) to 0.1x of the softmax clas-
sifier to prevent the prior knowledge from being distorted with noises in LR face examples.

Face [ Ori. / Ext. SCFace \

Models \ DI [ D2 [ D3 [ Mean |
ElasticFace 95754035 / 78.45:0.97 | 99.50:£0.25 / 94.95£0.62 | 99551027 / 97.90+0.45 | 98.27:£0.11 / 90.43+£0.41
MagFace 95.8040.62 / 77.65+1.24 | 99.50:£0.18 / 94.65+0.58 | 99.60+0.22 / 98.10+0.38 | 98.30+£0.24 / 90.13£0.59
AdaFace 95.9040.55 / 77.95+0.65 | 99.55:£0.11 / 95.75£0.40 | 99.95+0.11 / 97.95+0.27 | 98.47+0.14 / 90.55+0.10

[ SlackedFace [ 96.50+0.50 / 79.30+0.48 [ 99.5040.18 / 96.00+0.59 [ 100.04-0.00 / 98.65:£0.29 [ 98.67+0.12 / 91.32:+0.15 |

[ SlackedCosFace [ 96.20£0.21 / 78.45+1.05 [ 99.4040.22 / 96.10+£0.74 [ 100.04-0.00 / 98.55:£0.37 [ 98.53+0.13 / 91.03:+0.55 |

Table 6: Performance comparison for SlackedFace and SoTAs (using pre-trained ResNet50
as the embedding encoder) over 5 random initializations, in terms of averaged rank-1 identi-
fication rate (%) and standard deviation. Note that SlackedCosFace is an extended variant to
be disclosed in Section E of this supplementary material.

E. Extension of SlackedFace

Aside from ArcFace (reported in our manuscript), we extend SlackedFace based on CosFace,
termed SlackedCosFace in this section, for further exploration. Likewise, we substitute the
static margin m in 7 (60,5, m)cosFace (2) With a slacked margin term & (m) as follows:

T(ijsvm)SIackedCosFace = S(COS eyi - S(m)) s 5(’") =m+n 6; 14)

We also disclose in Table 6 that SlackedCosFace performs on a par with the ArcFace-learned
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Unseen
?
‘ Test Set Indexed by? 10 Hardest + 10 Easiest Examples
0.0678 0.0703 0.0732 0.0754 00759  0.0782 0.0783 0.0784 0.0787 0.0794
o “-EE-MENNE
0.2174 0.2386 0.248 0.2545 02587  0.2725 0.2733 0.2772 0.2779 0.2781
. =
P-Norm
SCFace Hardest Examples
0.1446 0.1453 0.1459 0.1468 0.1469 0.1471 0.1475 0.1478 0.1484 0.1502
- r_ r- .
Norm -l - e s |
=
0.7801 0.7894 0.8155 0.8349 0.8426 08478  0.8579 0.8714 o 8769 0.8943
_— |
o & B “ -,
Easiest Examples
0.0657 0.0712 0.0714 0.0715 0.0752 0.0762 0.0781 0.0794 0.0798 0.0808
Norm I i
- : ,
= |
0.1156 0.1189 0.1208 0.1224 01248  0.1306 0.1338 0.1342 0.1355 0.1359
e -.m....-.n
Hardest Examples
TinyFace 01414 01419 01423 01424 01431 01431 01434 01446 _ 01453 01486
y .
Norm ~ ' ! = -\
-~ - . ¥
| -
0. 5952 0.6964 0.7081 07093 07099 07112 0.7169 0.7209 0.7218 0.7396
Easiest Examples
0.0822 0.0913 0.0918 0.093 00949 00952 0.0966 0.0971 0.0979 0.0981
Norm L LN : i
g7 N2 A z -~
Algy ‘ % o 2
0.1544 0.1558 0.157 0.1585 01588  0.1599 0.161 0.1612 0.1612 0.1622
e -nu-uu-uu.
DroneFace Hardest Examples
0.1375 01376  0.1379 0.1385 01386  0.1387 0.1392 0.1394 0.1398 0.1403
o .==.....-
0.5482 0.5483 0.5533 0.5581 0.561 0.5639 0.566 0.5664 0.573 0.5779
P-Norm
Easiest Examples

Figure 6: A collection of 10 hardest and easiest (unseen) test examples indexed by Norm and
proposed P-Norm for each benchmarking dataset.

counterpart. More importantly, we demonstrate that the overall performance of the proposed
SlackedFace models (both learned with ArcFace and CosFace) surpass other SoTAs by a
significant margin in resolving open-set LR face identification tasks, especially in the most
challenging D1 probe set with distractors.



