MG-MLP: Multi-gated MLP for Restoring Images from Spatially Variant Degradations

Jaihyun Koh1, Jaihyun Lew2, Jangho Lee3 and Sungroh Yoon2

Samsung Display1, Data Science and AI Laboratory, Seoul National University2, Incheon National University3

Introduction and Background

1. Image Restoration Task
 - Low-level semantic, the relationship between pixels rather than abstract.
 - Sufficient receptive field is essential to search for similar patterns.
 - Architecture should be "fully convolutional": Not fixed resolution.

2. Restormer (CVPR 2022)
 - Channel-wise multi-head self-attention with quadratic complexities.
 - Leveraging 3rd order interaction of transformer architectures.
 - Invariant architecture to the resolution of an input image.

3. NAFnet (ECCV 2022)
 - MLP architecture using 1x1 conv. and 3x3 depth-wise conv.
 - Gating operation using element-wise multiplication.
 - Channel mixing (1x1) and token mixing (3x3) are critical components.

Proposed MG-MLP Block

1. Intra-token gating: controls the flow of information through the interaction of data in each token.
2. Cross-token gating: updates the resulting token from intra-token gating and simultaneously brings back the data discarded by intra-token gating by referring to the adjacent tokens.

Benefit / Experiments and Results

1. More flexible information flow control
 - Update gate, reuse gate inspired by LSTM, GRU.
 - Input and receptive field adaptive gating
 - 3rd order interaction like ViT
 - MG-MLP: Multiplication of three projection input

2. Multi-modal Gaussian Mixture
 - By two gating unit

Complexity and Performance

Generalization

Feature Visualization and Ablation

Macro Architecture

Feature Visualization

Ablation

GoPro Dataset

Real Blur-J and DVD Dataset

The two residuals refined by the two gating mechanisms contain complementary features. The two gating paths perform distinct feature refinements by dividing a region into more blurry and less blurry regions.