KOH ET AL.: MG-MLP: MULTI-GATED MLP FOR IMAGE RESTORATION 1

MG-MLP: Multi-gated MLP for Restoring
Images from Spatially Variant Degradations
- Supplementary Material

Jaihyun Koh' ' Display Research Center

julian.koh@samsung.com Samsung Display Corporation

Jaihyun Lew? Yongin, South Korea

fudojhl@snu.ac.kr 2 Interdisciplinary Program in Artificial

Jangho Lee? Intelligence

ubuntu@inu.ac.kr Seoul National University

Sungroh Yoon"2# Seoul, South Korea

sryoon@snu.ac.kr 3 Department of Computer Science and
Engineering

Incheon National University
Incheon, South Korea
4 Department of Electrical and Computer
Engineering
Seoul National University
Seoul, South Korea

* Corresponding Author

1 Code submission

For reproducibility, we provide python files implemented using PyTorch 1.11.0 and Python
3.9. This implementation is based on BasicSR and the skeleton and macro architecture are
borrowed from NAFnet.

basicsr/models/archs/mg_mlp_arch.py contains the architecture of the pro-
posed MG-MLP

basicsr/models/archs/NAFNet.py includes the architecture of the NAFnet [2].

basicsr/models/archs/Restormer_arch.py contains Restormer’s networks
block [10].

options/train/{datanamel}/*.yml contains the learning hyperparameters, net-
work architecture, data location, etc for training.

options/test/{datanamel}/*.yml contains the network architecture and data lo-
cation for a test.

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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e train.sh includes a command to train.

¢ test.sh includes a command to test.

We trained three restoration models with a unified framework to determine the perfor-
mance gains from the proposed architecture of the network block. We equalized all hyperpa-
rameters used in training the three networks, including macro architecture and learning-rate
schedules, which are the same as those of NAFnet. In addition, we set the batch size to 8 to
train using a single Nvidia V100 GPU with feeding 256 image patches. The trained weights
of the three networks on the GoPro dataset can be downloaded at this link.

2 Gating Mechanism

Our gating can learn the multi-modal Gaussian mixture distribution of complex clean images
[3]. The existing single-path residual block optimized with the mean squared error (MSE)
induces the model to learn the uni-modal Gaussian distribution. By contrast, the proposed
multi-path structure provides the ability to learn bi-modal distributions. Intuitively, the pat-
terns in an image comprise a combination of simple patches. Assuming that a single simple
patch can be represented by a uni-mode, the combination of several uni-modal distributions
can express complex patterns. Empirical results revealed that each gating path handles dif-
ferent degradation levels in an image. This result revealed that the proposed MG-MLP block
is effective for spatially varying degradation.

2.1 Learning multi-modal Gaussian mixture distribution

A feedforward neural network, such as a ResNet block, approximates the deterministic func-
tion f(y). This function, which is learned by empirically minimizing the MSE loss, is a
model of a uni-modal Gaussian distribution p(x|y) [3]. Therefore, modeling the complex
multi-modal distribution of clean images is difficult. In particular, image-restoration tasks
solving an ill-posed inverse problem may have several solutions for the same input y, and
searching for it with such a uni-modal function is not trivial. Thus, adaptiveness to the in-
put images is critical for obtaining an underdetermined solution x. Although the nonlinear
approximation capability of deep neural networks can overcome this problem, a structured
solution is required. A gating mechanism is an option for addressing this problem [3, 4].
Considering a network that takes an input y and predicts latent x, it is a function that mod-
els the p(x|y) distribution. If the actual distribution of x is a multi-modal distribution, the
conditional mixture model can be expressed as follows:

p(x[y) Zp (y,8lx) Zp glx)p(ylx, ) (1

where g is a gating unit, p(y|x,g) is the probability distribution of the output y predicted by
the model, and p(g|x) is the probability distribution of the weights associated with x-adaptive
gating. In a previous study [3], the multi-modal probability distribution was modeled by mul-
tiplying two input projections, each having uni-modal Gaussian distributions, and stacking
these operations in several layers. Feed-forward NN blocks, including gatedConv [4] and
gMLP [9], have been proposed using this gating mechanism, such that the multiplication of
two different projections of the input introduces second-order interaction [9].
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Figure 1: An illustration of a simple Unet structure (macro architecture) for image restora-
tion.
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Figure 2: Illustration of token-embedding (blue arrow) and decoding (red arrow) methods.

2.2 Analysis on MG-MLP

A network trained using the proposed gating methodology can learn a Gaussian mixture
distribution with two modes. Assuming z is a random variable belonging to Z, the two uni-
modal distributions, each having a distinct mode, can be modeled as follows:

p(zi|z—1) = p(z, 81|z—1) + Pz, 82]2-1)
= p(gilzi—1)p(z|z-1,81) 2
+p(g2|ze-1)p(zt|z—1,82)-

This result is similar to the analysis conducted in a previous study [3]. However, in the pro-
posed MG-MLP, the unit NN block can instantly learn the multi-modal Gaussian mixture
distribution. By deep stacking of these blocks, the model can learn more complex distribu-
tions in clean images.

3 Macro Architecture

The CNN block-based image restoration architecture generally uses a multi-scale strategy
to extend the receptive field of the models. These methods downscale the degraded image
with several scale factors, and the resulting images with different sizes are input to multi-
ple network branches. The models are then optimized so that the output image from each
branch becomes the same as the downscaled ground truth image. This multi-scale approach
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is effective in receptive fields but could not be efficient in terms of memory and computa-
tional operation. Many researchers have explored how to efficiently aggregate features from
multiple resolution stages without multiple branches. These efforts eventually resulted in
complex connections and messy structures. This complexity may come from the inability of
the CNN-based blocks to perform adequate feature aggregation due to the spatially invariant
biases. Now, it is worth considering whether multi-scale methodologies are necessary for
MLP mixer and ViT-based networks where unit NN blocks have sufficient receptive fields
and do not have a bias that comes from network structure.

The proposed network blocks are integrated into the Unet as a macro architecture. The
feature encoding procedure in the restoration model reduces the feature scale in the spatial
direction corresponding to resolution while extending it in the channel direction. Therefore,
the embedded token includes the representations of multiple pixels in an adjacent area. After
repeating this encoding process, information in a wide area is hierarchically embedded into
a token vector. As the number of downscales increases, one token contains more pixel infor-
mation, so the feature map of the bottleneck layer can have a sufficiently large receptive field.
For this reason, the recently proposed MLP mixer-based network architectures more focus
on modeling the relation between surrounding tokens rather than developing the multi-scale
strategy that widens the receptive field. Transformer and MLP mixer-based networks, which
use the Unet structure instead of a complex multi-resolution design, exhibit competitive re-
sults. Thus we also do not use multi-scale or stage methods. Instead, we employ the simple
Unet structure in which we use a method of encoding spatial to channel by adopting a pixel
rearrangement and MLP, as shown in Figure 2. The detailed Unet used in our experiments is
shown in Figure 1.

In the ViT or MLP-like architecture, if a single token has an adequate receptive field
and interacting tokens are connected densely with free weight, communicating only with
adjacent tokens can be acceptable. We empirically found that broad interaction does not lead
to further performance improvements. Comparing nine-tokens aggregation implemented by
3x3 depth-wise convolution with more tokens interaction, such as 25 and 49, as increasing
aggregation filter size, the performance is degraded due to the error caused by larger padding.

4 Additional Results
4.1 Evaluation on DPDD Dataset

Defocus Deblurring We evaluated the models on the DPDD dataset [1] to confirm the
performance of spatially variant defocus deblurring. The quantitative results are presented in
Table 4.2. The MG-MLP outperformed others in terms of SSIM, LPIPS [11], and DISTS [5],
which evaluate the perceptual quality. This result revealed that the proposed gating mech-
anism effectively reconstructs the structural information of an object. The qualitative com-
parison in Figure 3 supports this argument.

4.2 Additional Results

Figure 4 - 7 shows the addition qualitative comparisons. All figures are best viewed in zoom.
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Restormer [10]
PSNR SSIM

GoPro-test | 3207 09513 | 3223 09543 | 3287 09604
Table 1: Average PSNR and SSIM on GoPro testset [6]: two baselines [2, 10] are trained

using macro architecture and learning hyper-parameters proposed in the original paper,
whereas the proposed MG-MLP is trained with the unified framework.

NAFNet [2]
PSNR  SSIM

MG-MLP (ours)
PSNR SSIM

GoPro-trained

DPDD-test [1]
PSNRT SSIM1 LPIPS] DISTS|
Restormer [10] 25.72 0.8561 0.2055 0.1322
NAFNet [2] 25.77 0.8589 0.2145 0.1326
MG-MLP (ours) 25.50 0.8592 0.1889 0.1226

DPDD-trained

Table 2: Average PSNR, SSIM, LPIPS [11], and DISTS [5] for the images in the spatially
variant defocus deblurring dataset (DPDD) [1]. Up-arrows denote that higher values are
better, and down-arrow indicate the opposite.

Input Restormer NAFnet MG-MLP (ours) Ground truth

Figure 3: Two example images from the DPDD dataset [1] restored by three different net-
works.

Input Restormer NAFnet MG-MLP (ours) Ground truth

Figure 4: Additional example images from the GoPro dataset [6] restored by three different
networks. The first column contains the degraded input images. The next three columns
show the reconstructed images obtained using Restormer [10], NAFnet [2], and our MG-
MLP. The final column contains the ground truth images.


Citation
Citation
{Zamir, Arora, Khan, Hayat, Khan, and Yang} 2022

Citation
Citation
{Chen, Chu, Zhang, and Sun} 2022

Citation
Citation
{Nah, Hyunprotect unhbox voidb@x protect penalty @M  {}Kim, and Muprotect unhbox voidb@x protect penalty @M  {}Lee} 2017

Citation
Citation
{Chen, Chu, Zhang, and Sun} 2022

Citation
Citation
{Zamir, Arora, Khan, Hayat, Khan, and Yang} 2022

Citation
Citation
{Abuolaim and Brown} 2020

Citation
Citation
{Zamir, Arora, Khan, Hayat, Khan, and Yang} 2022

Citation
Citation
{Chen, Chu, Zhang, and Sun} 2022

Citation
Citation
{Zhang, Isola, Efros, Shechtman, and Wang} 2018

Citation
Citation
{Ding, Ma, Wang, and Simoncelli} 2020

Citation
Citation
{Abuolaim and Brown} 2020

Citation
Citation
{Abuolaim and Brown} 2020

Citation
Citation
{Nah, Hyunprotect unhbox voidb@x protect penalty @M  {}Kim, and Muprotect unhbox voidb@x protect penalty @M  {}Lee} 2017

Citation
Citation
{Zamir, Arora, Khan, Hayat, Khan, and Yang} 2022

Citation
Citation
{Chen, Chu, Zhang, and Sun} 2022


6 KOHET AL.: MG-MLP: MULTI-GATED MLP FOR IMAGE RESTORATION

Input Restormer NAFnet MG-MLP (ours) Ground truth

Figure 5: Additional example images from the RealBlur-J dataset [7] restored by three dif-
ferent networks.

Input Restormer NAFnet MG-MLP (ours) Ground truth

Figure 6: Additional example images from the DVD dataset [8] restored by three different
networks.
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Figure 7: Additional example images from the DPDD dataset [1] restored by three different
networks.
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