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Figure 1: Diagram of ChunkGate unit (CG). The intermediate feature is evenly divided into
2 sub-features along the channel direction, which are fused together by simple element-wise
product ⊙. The operation halves the number of channels for the feature.

1 Nonlinear Activation Function

Nonlinear Activation Function While gaussian error linear unit (GeLU)[5] has gained pop-
ularity in computer vision, we aim to investigate whether its performance can be enhanced
while retaining the same number of parameters, or if it can be simplified without compro-
mising its performance. To answer these questions, we examine some of the latest state-of-
the-art (SOTA) methods, such as [6, 8, 12, 13]. Our analysis reveals that all of these methods
use gated linear units (GLU)[1].

The usual gated linear unit can be expressed as:

Gate(X, f ,g,ϕ) = f (X)⊙ϕ(g(X)) (1)

Where X represents feature mapping, which undergoes linear transformations, ϕ is a non-
linear activation function such as rectified linear unit (ReLU)[9] or Sigmoid, and ⊙ denotes
element-wise multiplication. While incorporating GLU into our network structure may en-
hance performance, it also leads to increased intra-block complexity, which is not desirable.
To address this issue, we re-examine the activation function used in the network structure,
specifically GeLU:

GeLU(x) = xΦ(x) (2)
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Table 1: Effects of skip connections (SCs) in ChunkGate blocks and groups (CGBs, CGGs)
measured on Urban100 with ×3. The best result is highlighted.

Config 1 2 3 4
SCs in CGBs × ✓ × ✓
SCs in CGGs × × ✓ ✓

#Params 975K 1023K 987K 1068K
PSNR 28.38 28.52 28.50 28.63

Where Φ is the cumulative distribution function of the standard normal distribution. And
based on [5], it is suggested that the GeLU can be approximated and implemented by:

0.5x(1+ tanh[

√
2
π
(x+0.044715x3)]) (3)

From Eqn.1 and Eqn.2, it is evident that GeLU is a specific instance of GLU, where f
and g are identity functions, and ϕ is replaced by Φ. This similarity leads us to speculate
that GLU can be viewed as a generalization of the activation function and could potentially
replace the nonlinear activation functions. Moreover, we observe that GLU itself contains
nonlinearity and does not rely on ϕ , the formula Gate(X) = f (X)⊙ g(X) contains nonlin-
earity even if ϕ is removed. Based on these observations, we propose a simplified version
of GLU, called ChunkGate, which directly divides the feature map into two parts along the
channel dimension and multiplies them, as illustrated in Fig.1. This modification aims to
reduce intra-block complexity and achieve better performance while maintaining the same
number of parameters.

In contrast to the complex implementation of Eqn.3, our ChunkGate can be implemented
through element-wise multiplication:

ChunkGate(X,Y) = X⊙Y (4)

Where X and Y are feature graphs of the same size.
By replacing GeLU in the baseline with the proposed ChunkGate, the performance of

Single image super resolution (SISR) is significantly improved. The results clearly indicate
that GeLU can be effectively replaced by our proposed ChunkGate. As a result, only a few
types of nonlinear activations, such as Sigmoid and ReLU in the attention module, remain in
the network.

2 Ablation Studies
The proposed method’s performance behavior was investigated by analyzing the effects of
skip connections within the locally dense and globally dense groups of SwiseNet and the
effects of ChunkGate and Scale-wise upsample module (SUM).

2.1 Feature extraction.
Table 1 presents the ablation study on the impact of skip connections (SCs) in gated cell
groups (CGG) and gated cell units (CGB) and their effect on the performance of the proposed
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Table 2: Average PSNR to show the performance of SwiseNet with different interpolation
methods. The test dataset is Set5. Best results are highlighted.

Experiment Parameters Scales
×2 ×3 ×4

Pixelshuffle 1035K 38.10 34.43 32.31
SUM-bilinear 1077K 38.16 34.59 32.39
SUM-bicubic 1077K 38.18 34.61 32.43

Table 3: Average PSNR to show the performance of SwiseNet across different scale groups.
The test dataset is Set5. Best results are highlighted.

Scale-wise factor Parameters Scales
×2 ×3 ×4

×(N, N+1, N+2) 1102K 38.13 34.57 32.37
×(N-1, N, N+1) 1086K 38.12 34.56 32.38
×(N, N+1) 1063K 38.16 34.59 32.39
×(N, N+1, 1/2) 1077K 38.18 34.61 32.43

method. In this study, SCs are composed of conjunctions and 1×1 convolution, and the
exclusion of SCs using 1×1 convolution has resulted in a slight variation in the number of
parameters among the columns.

The results demonstrate that using SCs only in CGG outperforms the model that does
not use SCs. This is because the short connections within CGG efficiently carry information
from the middle to the high level, enabling the model to better utilize multilevel representa-
tions by collecting all features before upgrading the module.

However, it has been suggested in [4] that multiplication operations on shortcut con-
nections, such as 1×1 convolution, may hinder information propagation and complicate
optimization. Therefore, when all SCs are deactivated, performance degradation can be
expected. This is because SCs simplify information propagation while learning local con-
nections. Therefore, the study found that SwiseNet performs better than all three models
when it uses SCs in both CGB and CGG.

In addition, the use of SCs in CGB provides a more effective way to learn local features
by enhancing the flow of information between adjacent blocks. This enables the model to
capture more fine-grained features, which is particularly useful in tasks that require high-
resolution images. Therefore, the combination of SCs in both CGB and CGG in SwiseNet
allows for the efficient propagation of information both globally and locally, leading to im-
proved performance in image super-resolution tasks.

The use of SCs in CGG enables the transmission of information globally, while the flow
of information in CGB is combined with the flow of information from global connections.
This approach facilitates the transmission of information through multiple shortcuts, which
mitigates the issue of disappearing gradients. Specifically, in CGG, SCs take advantage of
the multi-layered representation to facilitate the spread of information to higher levels.
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Figure 2: Visual results of BD and DN degradation model with scale factor ×3.

2.2 SUM cross-scale effect.

This paper analyzes the advantages of introducing SUM module and discusses the influence
of different interpolation methods on reconstruction. We carried out the following experi-
ments :(i) generate images directly using pixelshuffle without multi-scale feature mapping;
(ii) Using bilinear interpolation to upscale and downscale multi-scale feature images gener-
ated by pixelshuffle; (iii) Perform the same operation as (ii) using bicubic interpolation. As
shown in Table 2, the multi-scale method proposed in this paper is applied and good results
are obtained. These experiments show that, contrary to the usual practice in the field, the
addition of multi-scale modules greatly improves the reconstruction accuracy. Compared
with bilinear interpolation, the best result can be obtained by combining SUM with bicubic
interpolation.

2.3 Multi-scale generalization.

The purpose of this section is to investigate the generalization ability of our architecture
across different scales. In our architecture, the multi-scale factors are always N+1, N, and
1/2 when the maximum scale is N, as explained in Section 3.2 of the main text. To test the
generalization ability, we trained models for N∈2,3,4 and evaluated them on different scales.
The results in Table 3 show that models trained for multi-scale produced better PSNR scores
for all scale factors, indicating that our architecture can generalize across scales without the
need for specialized models for each scale.

Additionally, the cost of additional parameters is low, since ×4 and ×8 consist of multi-
ple consecutive ×2 operations, resulting in fewer parameters introduced. Although selecting
factors at multiple scales to higher scales slightly improves PSNR, it comes at the cost of
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Table 4: Average PSNR/SSIM for models with the same order of magnitude of parameters
(RDN included as a high-capacity reference model). Scores shown for scale factor ×3 using
BD and DN degradation models. The best results are highlighted in red color and the second
best is in blue.

Dataset Model Bicubic SPMSR[10] SRCNN[2] FSRCNN[3] VDSR[7] SRMD(NF)[11] RDN[16] SwiseNet

Set5
BD 28.34/0.8161 32.21/0.9001 31.75/0.8988 26.25/0.8130 33.78/0.9198 34.09/0.9242 34.58/0.9280 34.68/0.9285
DN 24.14/0.5445 - 28.10/0.7783 24.24/0.6992 27.81/0.7901 27.74/0.8026 28.47/0.8151 28.52/0.8168

Set14
BD 26.12/0.7106 28.97/0.8205 28.72/0.8024 25.63/0.7312 29.90/0.8369 30.11/0.8304 30.53/0.8447 30.53/0.8442
DN 23.14/0.4828 - 25.55/0.6610 23.10/0.5869 25.92/0.6786 26.13/0.6974 26.60/0.7101 26.64/0.7118

BSD100
BD 26.02/0.6733 28.13/0.7740 27.97/0.7921 24.88/0.6850 28.70/0.8003 28.98/0.8009 29.23/0.8079 29.24/0.8081
DN 22.94/0.4461 - 25.31/0.6351 23.70/0.5856 25.60/0.6455 25.64/0.6495 25.93/0.6573 25.96/0.6612

Urban100
BD 23.20/0.6661 25.84/0.7856 25.50/0.7812 22.14/0.6815 26.80/0.8191 27.50/0.8370 28.46/0.8582 28.49/0.8580
DN 21.63/0.4701 - 23.40/0.6590 21.15/0.5682 24.01/0.6802 24.28/0.7092 24.92/0.7364 25.01/0.7424

more computation. Therefore, for the remaining experiments, we will extend to N+1 and
1/2, as it still provides a significant improvement at a slightly higher computational cost.

2.4 Results with BD and DN degradation models
To comprehensively evaluate the effectiveness of the proposed method, we utilized three
degradation models to simulate LR images, as described in [14, 15, 16]. The first model,
denoted as BI, generates LR images by bicubic downsampling the ground truth HR images
with scaling factors of ×2, ×3, and ×4. This has already been discussed in the main text.
The second model, denoted as BD, involves bicubic downsampling of HR images by a factor
of ×3, followed by blurring the images using a Gaussian kernel with a size of 7×7 and a
standard deviation of 1.6. Lastly, the third challenging model, denoted as DN, produces LR
images by performing bicubic downsampling followed by the addition of additive Gaussian
noise with a noise level of 30.

Following the methodology of Li et al. [16], we present the evaluation results obtained by
applying BD and DN degradation models and compare them with six existing SR methods
[2, 3, 7, 10, 11, 16]. Additionally, we include the RDN [16] model as a reference. To ensure
a fair comparison, we retrained the SRCNN [2], FSRCNN [3], and VDSR [7] models for
BD and DN degradations to consider the mismatches in degradation settings. The evaluation
metrics, including PSNR and SSIM scores, along with the number of model parameters and
Multi-Adds operations, are summarized in Table 4. We note that SwiseNet performs worse
than RDN in some BD datasets, but better in DN datasets due to the benefits of the Scale-wise
Upsample Module (SUM) in SwiseNet. SUM helps to reduce DN degradation and obtain
better results than RDN with only 1.1M parameters, whereas RDN has 22M parameters.

In Fig.2, we present two sets of visual results obtained using the BD and DN degra-
dation models from standard benchmark datasets. With the BD degradation model, other
methods failed to eliminate blurring artifacts. In contrast, SwiseNet successfully mitigated
distortions and generated SR images with improved accuracy and finer details. As for the
DN degradation model, we observed that recovering details was challenging for other meth-
ods. However, our proposed method demonstrated good performance by effectively reducing
noise and enhancing details in the reconstructed images.
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