

Motivation

- The classifier of MAML family is highly sensitive to the pseudo query data.
- The feature extractor of MAML family is highly adaptable to the pseudo query data.
- The imbalance of pseudo query data may have negative impact.

Contribution

- This work is the first to incorporate label propagation used in transductive methods to generate pseudo-labels for MAML.
- We propose to use adaptive picking to select instances from the pseudo query set to balance the number of samples for each class.
- We apply our Generative Pseudo-label method to two typical variants of MAML, and improve their performance. demonstrating the applicability of our approach.

Formulation

For all tasks, we compute adapted body parameters :

$$heta_{body_i}^{TPN} = heta_{body} - lpha
abla_{ heta_{body}} \mathcal{L}_{spt_i} \left(f_{ heta_{body}, heta_{head}}
ight).$$

We construct the weighted graph:

 $Graph_i = g_{ heta_{graph}}(f_{ heta_{bodu}^{TPN}}(spt_i,qry_i)).$

We Re-update parameters with new support set examples:

$$heta_{body_i}, heta_{head_i} \leftarrow heta_{body}, heta_{head} - eta
abla_{ heta_{body}, heta_{head}} \mathcal{L}_{spt_i'} f_{ heta_{body}, heta_{head}}.$$

Generating Pseudo-labels Adaptively for Few-shot Model-Agnostic Meta-Learning

Guodong Liu, Tongling Wang, Shuoxi Zhang, Kun He Huazhong University of Science and Technology, Wuhan, China {guodl, wangtl, zhangshuoxi, brooklet60}@hust.edu.cn

Network Architecture

- In phase 1, the few-shot model up-dates its parameters through the support set.
- In phase 2, we adopt the label propagation of TPN to label the query set, which will be filtered by adaptive picking to select the pseudo query data.
- In phase 3, the picked pseudo query data will be added to the support set for re-training, then the loss of the query set is calculated as in MAML.

Experiments

We conduct a comprehensive experimental analysis of our GP-MAML, GP-ANIL, and GP-BOIL.

Method	MiniImageNet		CIFAR-FS		FC100	
	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot
MAML	48.24	61.52	57.57	72.31	36.64	47.26
ANIL	49.61	64.90	58.34	72.34	36.38	47.16
BOIL	49.82	67.60	58.69	75.31	38.80	51.42
MAML(w. qry)	34.89	50.11	43.71	58.40	25.24	30.51
ANIL(w. qry)	37.49	48.41	46.23	59.52	25.68	30.97
BOIL(w. qry)	49.88	68.08	60.91	76.32	39.67	52.02
MAML(w. AP)	51.37	63.82	62.58	75.08	38.65	48.92
ANIL(w. AP)	53.00	67.86	63.44	75.12	38.37	48.71
BOIL(w. AP)	52.42	69.84	63.51	77.76	40.76	52.97
GP-MAML	52.71	68.06	64.03	75.60	38.57	48.50
GP-ANIL	55.92	70.73	65.66	75.08	38.95	51.16
GP-BOIL	55.55	71.36	66.55	78.50	41.80	53.71

Conclusion

- of the query set.

References

- Representations. 2019

 We generated pseudo-labels by using label propagation with adaptive picking. introduced transductive methods to typical inductive methods. We address the problem that inductive methods can not fully utilize information

· We also proposed a simple yet effective method called adaptive picking to select samples from distinct classes with balanced quantity.

[1] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic metalearning for fast adaptation of deep networks. In Proceedings of the 34th International Conference on Machine Learning, 2017.

[2] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sung Ju Hwang, and Yi Yang. Learning to propagate labels: Transductive propagation network for few-shot learning. In 7th International Conference on Learning