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1 Supplementary

1.1 Experimental Setup
Network architecture. Similar to GWM [1], we modify the PixelDecoder in MaskFormer’s
segmentation head by appending the layers [Conv(3), UpsampleNN(2), Conv(1)] × 2 to the
output layer to get the output segmentation mask at the same resolution as the input. Also,
since we directly obtain object segmentations through the network, we set the number of
object queries to 1, which results in a single-channel output. Further, we take sigmoid(x) =

1
1+e−x on the output of the network (gθ ) to produce values in the range [0,1]. We use a
threshold of 0.5 in all our experiments to produce a binary segmentation mask.
Training Setup. All the images are interpolated to a resolution of 256×512 (using bi-cubic
interpolation), before passing to the segmentation network while training. At the time of
loss computation, we also interpolate the pseudo-ground-truths to 256× 512 (using nearest
interpolation). We employ the binary cross entropy loss function to optimize the weights of
the segmentation network, gθ . We use AdamW [3] optimizer with a base learning rate of
1.5× 10−4, linearly decaying at a rate of 0.01 starting from 1.× 10−6 for 1.5k iterations.
Moreover, we train the network until convergence. Empirically, we found 25k iterations to
be sufficient. We use a single 80GB A100 GPU for training the network with a batch size of
8.
Optical Flow computation in graph-cut. Let’s denote the frames of a given video by the
sequence, f1, f2, ..., fN . For a frame fi, we compute the optical flow between fi and fi+1
for 1 ≤ i < N. For i = N, we take the optical flow between fN and fN−1 in our graph-
cut step. The obtained optical flow is a 2-channel tensor indicating displacement of pixels in
horizontal and vertical directions. We convert these to 3-channel tensors (in RGB format) us-
ing open-source implementations, for e.g., https://github.com/ChristophReich1996/Optical-
Flow-Visualization-PyTorch.
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1.2 Qualitative Results
Vi

de
o

Fr
am

e
Vi

de
o

Fr
am

e
Vi

de
o 

Fr
am

e
O

ur
Pr

ed
ic

tio
n

G
T

D
AV

IS
16

O
ur

 
Pr

ed
ic

tio
n

G
T

Se
gT

ra
ck
v2

O
ur

 
Pr

ed
ic

tio
n

G
T

FB
M
S5
9

Figure 1: Qualitative results of our flow-guided graph-cut approach on all the video
benchmarks - DAVIS16 [6], SegTrackv2 [2] and FBMS59 [5]. Our approach incorporat-
ing motion information in traditional graph-cut produces high quality object segmentation
masks. Quantitatively, this step alone produces results comparable to current state-of-the-art
methods on DAVIS16 and STv2 datasets.
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Figure 2: Qualitative results of our full method (LOCATE) on DAVIS16 [6] benchmark.
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SegTrackv2
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Figure 3: Qualitative results of our full method (LOCATE) on SegTrackv2 [2] and
FBMS59 [5] datasets.
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Figure 4: Qualitative results of our method on image saliency detection (ECSSD [7],
DUTS [9], OMRON [10]) and object segmentation (CUB [8], Flowers-102 [4]) bench-
marks.
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Figure 5: Qualitative results of our method (LOCATE) on in-the-wild images. We asked
several users to test our model on random images of their own preference, and collected the
results. We show some of the representative examples and their corresponding predicted
segmentation masks above. This study reinforces the effectiveness of our model in the wild.
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