

RBFormer: Improve Adversarial Robustness of Transformer by Robust Bias

Hao Cheng¹, Jinhao Duan², Hui Li³, Jiahang Cao¹, Ping Wang⁴, Lyutianyang Zhang⁵, Jize Zhang⁶, Kaidi Xu², Renjing Xu¹ ¹The Hong Kong University of Science and Technology (Guangzhou), ²Drexel University, ³Samsung R&D Institute China Xi'an, ⁴Xi'an Jiaotong University, ⁵University of Washington, ⁶The Hong Kong University of Science and Technology.

 Adversarial examples are obtained by adding imperceptible perturbations to a correctly classified input image;
Adversarial training uses the min-max optimization to

improve the adversarial robustness of corresponding models

CMLP removes CLS token and adopting an average pooling layer to process patches.

Block Aggregation is adopted to aggregate different token vectors hierarchically. Adding convolutional operation through replacing the Linear Layer with Conv Layer

Embedding removes the CLS token and directly averages all tokens. The original embedding dimension modification process is directly changed to convolution operation.

Lipschitz

Constant

159.2/163.2

157.7/164.7

151.3/152.3

152.7/157.5

151.4/155.8

153 1/162 3

146.3/148.5

140.3/141.3

143.2/146.9

136.9/138.1

152.0/154.2

146.3/145.2

158 2/167 9

89.1/98.7

ImagePy Structure first splits and then aggregates non-overlap image patches in a hierarchy way.

and ensure dimensional transformation. ViT/VMLP PGD Clean Auto-Attack Stacking (8/255) Component Accuracy Embedding TM CMLP Norm (8/255) Combine Structure 79.88/71.06 52.66/45.56 51.12/44.37 Ori Ori Ori None oriViT (a) (b)-Ori LN 79.93/66.38 52.70/44.06 51,45/43,10 CONV 82.81/78.83 54.79/54.24 53.83/53.69 (c) None 81.66/77.58 54.69/51.00 53.85/50.88 (d) LN CONV 82.77/77.86 55.85/53.22 54.98/52.89 (e) Ori None (f) LN 80 50/75 92 54 40/50 89 53 69/48 99 CONV 80.57/79.25 55.63/53.81 54.23752.45 (g) None LN (h) 82.35/81.42 56.41/56.89 56.12/57.02 (i)-CVT CNN-based PCONV CONV 79.62/77.62 53.15/52.12 52.11/50.21 Ori (j) CONV 80.98/79.64 57.67/56.83 57.34/57.06 47.64/45.21 (k)-Swin WBM+SWBM 76.39/75.23 48,93/46,34 Ori Ori Swin based PCONV CONV 80.08/78.34 52.10/50.92 50.48/50.22 (1)(m)-NT 76 22/75 94 Ori Ori Ori 57 45751 87 51 28749 14 -ImagePy CONV - È m-NT n-RB PCONV (n)-RB CONV 83.74/82.19 60.91/59.88 59.69/59.22

Table 1: The robust performance in CIFAR-10 of ViT/WMLP accurecy (%). 1) Structure (a)-(h):adding convolution operation to different components; 2) Structure (h)-(n): adopting various multi-hierarchy layer stacking strategies. (b) is the original ViT/VMLP (Ori), (i) is corresponding to GVT, (k) Swir, (m) is the NesT. (n) is our final RBViT/RBMLP (RB).

Tab. 1 and Fig.1: According to the results of adding convolution operation (structures (a) to (h)) and multi-hierarchy layer stacking strategies (structures (h) to (n)) under CIFAR-10 and ImageNet-1k, we conclude: 1) In each kind of layer stacking strategy, adding convolution operation to any components could generate a positive effect on improving robustness; 2) Not any layer stacking strategy could successfully introduce robust bias to boost robustness, like Swin; 3) ImagePy structure would be the best choice and make the final structure attain the best adversarial robustness.

Fig. 2: Under comparing RBViT/RBVMLP (n) with some popularly used ViT/Mixer-MLP (b), CeiT and Local-ViT CVT/CVT-based VMLP(i), Swin ViT/VMLP (k), NesT/NesT-based VMLP. Our RBFormer could attain the best robust and clean accuracy with a relatively small model size.

Figure 2:Comparison Results of RBFormer (RBVit/RBVMLP) with current SOTA in clean/robust accuracy and model size.

TM Block keeps the original Multi-head Self Attention (MSA) and MLP structures in ViT and VMLP. The Norm and Skip-connection are both retained. About introducing convolution, all Linear Layers are replaced into Conv Layer according to the modification of other components and ensure dimensional transformation.