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Appendix

A Experimental Details and Additional Restuls

A.1 Experimental Detailed Setup
About the particular layer number selection, referring to some current widely used multi-
hierarchy structures Swin [16], NesT [47], CVT [33] and etc [15, 42, 45], we adopt 12 as
our total number of layers. The simplest OriViT could directly set the layer number to be
12. For a multi-hierarchy stacking structure, we adopt a three-stage hierarchy for CNN-
based structures with {1,2,9} for each stage. However, since the modification of Swin
is on MSA and does not directly introduce convolution operation, We would choose four
steps with {2,2,6,2} distribution for it. For the ImagePy, the hierarchy distribution could
be {2,2,8} to maintain the properties of pyramid structures. About the training phase, in
CIFAR-10, we respectively validate different structures under natural and adversarial train-
ing cases. About ImageNet-1k, we mainly focus on exploring the robustness of adversarial
training cases. To generate adversarial examples in CIFAR-10, about natural case, we adopt
the ε = 1/255,2/255,3/255 with iteration = 10 and step size = 0.01 to attack the original
evaluation model its robustness. In the adversarial case, we adopt the ε = 8/255 with the
same iteration and step size to generate adversarial examples and do training. For ImageNet-
1k, adversarial examples are generated by using ε = 4/255 with iteration = 3 and step size =
2ε/3 referring to [31]. For the specific experimental results, Table A1 is the exact values of
Fig. 3. Additionally, according to [7] and further study above, the structural design of ViT is
the most critical point to achieve better performance. The abuse of the attention block will
make the overall structure collapse to the rank-1 matrix. For alleviating this collapse, skip
connections are very crucial. MLP could help, but LN plays no role. To verify the impact
of this discovery on the design of robust transformer-based structures, we further explore the
effect of Skip-Connection or Res as a facilitation technique towards robustness in the natural
trained case as Table A2 and adversarial training case as Table A3.

A.2 Experimental Analysis
About the performance effect of skip-connection, MLP, and LN in Transformer[7], the ex-
perimental results in Table. A3 and Table. A2 show that the independent existence of skip-
connection and MLP has a minor influence on the robustness. On the contrary, the effect of
LN seems complex. When just removing LN, there is no performance change or even a little
increase in some cases like (5)-(7), (9)-(11), (13)-(15). After removing the skip-connection
or MLP, further removing LN will make the structure not converge. For a more detailed
statement, there will be the following changes about removing the LN layer:

I. According to the structures (1)-(3), (21)-(23), the performance of these component
combinations without LN only has a minor drop compared with the original one;

II. According to structures (5)-(7), (9)-(11), (13)-(15), (17)-(19), some structures could
have a better robust performance after removing the LN.

In a word, for the transformer-based structures in CIFAR-10, the existence of the Norm
will not help the robustness, but removing it could even promote robustness a little in some
cases. Furthermore, in ImageNet-1k, all structures would not converge after removing LN.
Sequentially, we could acquire that the LN will 1) play no role or be little harmful to the
robust performance of MetFormer and RBFormer structure with small training tasks (small
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model size or training datasets); 2) guarantee the training convergence under the large model
size and extensive datasets. Consequently, based on the analysis above, we would still keep
LN in our RBFormer to guarantee successful convergence in our training phase.

B Mathematical Analysis

B.1 ViT Structures Expression
The mathematical representation of ViT structure:

Xp =FDT(X) = [x1
p;x2

p; ...;xN
p ],

X ∈ RH×W×C,Xp ∈ RN×(P2·C)
(S1)

Z0 =Xp +Epos = [x1
pe;x2

pe; ...;xN
p e],

Z0 ∈ RN×(P2·C),Epos ∈ RN×(P2·C)
(S2)

Z
′
l =Res(FTM(FLN(Zl−1))),

l = 1, ...,L, Z
′
l ∈ RN×(P2·C)

(S3)

Zl =Res(FMLP(FLN(Z
′
l))),

l = 1, ...,L, Zl ∈ RN×(P2·C)
(S4)

y = FCMLP(FAVG(ZL)) (S5)
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Figure A1: The activation function (left) and loss function (right) map.

The embedding function transforms the original images into the embedding tokens.
These generating tokens are corresponding processing objects of the following TM block.
Embedding could be divided into two steps. Step 1 is adopted to execute dimension trans-
form in Eq. S1, which could reshape 2D image x ∈ RH×W×C to a 1D sequence through
flattening original 2D patches xp ∈ RN×(P2·C). (H,W ) is the resolution of the original im-
age, C is the channel number, P is the patch size. And the number of patches will be
N = HW/P2. After finishing Step 1, Step 2 in Eq. S2 will add a learnable 1D positional em-
bedding Epos ∈RN×(P2·C) to the token vector. The introduction of this positional embedding
is due to the loss of related positional information under the patch segmenting phase. Ad-
ditionally, similar to BERT’s [6] [class] token (CLS), ViT also adopts this component to do
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classification. After generating embedding token Z0, the next step of the transformer-based
structure is to use TM Block to mix those embedding tokens and make the most significant
efforts to capture the inner features. As we know before, two sub-blocks mainly constitute
the TM Block. The first one is the particular MSA sub-block (Eq. S3), and the second is
the MLP sub-block constituted by two projecting layers with a GELU non-linearity. For the
VMLP structures, like the Mixer-MLP [32] and PoolFormer [42], they adopt MLP sub-block
to replace the initial MSA sub-block and thus have two MLP sub-blocks. Apart from these
two main constituting sub-blocks, Layernorm (LN) and Skip-connection, or Residual (Res),
are also adopted in both phases as presented in Eq. S3 and S4. CMLP block is the final main
component in Eq. S5 and constitutes two MLP sub-blocks with a GELU non-linearity.

B.2 The Detailed Analysis of Robust Consideration
According to the equation Eq. S1 to Eq. S5 and Fig. A1, we could give a more detailed
explanation of the rationalization of robust bias. Inspired by [12, 34, 39], we know that
adversarial training leads to the enhancement of model robust through learning adversarial
examples generated from the inner high-frequency visual structures. Additionally, the inner
maximization process could find more challenging adversarial examples by increasing the
proportion of high-frequency structure, and the convolution operation would be a kind of
good high-frequency visual structure. Therefore, we further name the convolution operation
as robust bias since it could influence the adversarial robustness after adversarial training by
modifying its proportion in a whole structure. Apart from using the experimental evalua-
tion to certify the effect of robust bias, we also adopt a simple mathematical analysis here.
Fig. A1 is the activation function (Sigmoid as Eq. S6) and loss function (Cross-entropy loss
as Eq. S7) for the most straightforward two-class classification problem. Since the Sigmod
function is monotonically increasing, when the input of Sigmoid moves to frequency values
from X1 to X2, the output will also change from y1 to y2. In the cross-entropy loss of two
labels, the possible value range of loss would also extend from l1 to l2. Consequentially,
when the input frequency X is more toward the high-value region, this simple classification
task will result in a broader range of possible loss values like l1 to l2. Furthermore, since
the inner max in adversarial training is pursuing higher loss value within ℓp-ball constraint,
higher-frequency information exploration will finally lead to more challenging adversarial
examples. Eventually, these harder adversarial examples would facilitate the process of ad-
versarial training and make our proposed robust bias effectively increase the final structure
robustness.

y(x) = Sigmoid(x) =
2

1+ e−x (S6)

L(x) =−[ylog(ŷ)+(1− y)log(1− ŷ)] (S7)
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ViT/VMLP Clean
Accuracy

PGD
(4/255)

Auto-
Attack
(4/255)

Components
Combine

Embedding TM CMLP Norm
Stacking
Structure

(b)-Ori Ori Ori Ori LN oriViT 58.63/57.93 26.32/23.62 25.98/22.79
(h) CONV - CONV - - 61.25/61.12 28.58/27.43 28.22/26.74

(i)-CVT PCONV CONV Ori - CNN-based 57.43/56.97 27.40/26.89 26.64/25.98
(j) - - CONV - - 61.07/60.61 30.28/29.99 28.77/26.91

(k)-Swin Ori WBM+SWBM Ori - Swin-based 59.74/58.98 24.12/21.62 23.58/20.19
(l) PCONV - CONV - - 62.37/61.45 28.13/27.24 27.62/25.83

(m)-NT Ori Ori Ori - ImagePy 58.37/57.98 27.89/26.59 26.67/25.76
(n)-RB PCONV CONV CONV - - 61.59/60.27 32.71/32.09 32.25/31.78

Table A1: The robust performance of our proposed representative structures in ImageNet-1k. All results are
shown in ViT accuracy (%)/VMLP accuracy (%). (b) is the original ViT/VMLP [8, 32] (Ori), (h) is the oriViT
structure with the most convolution operation, (i) is corresponding to CVT [33]/CVT-based VMLP (CVT) or CNN-
based structures, (j) is the CNN-based structure with the most convolution operation, (k) is Swin ViT/MLP [16]
(Swin), (l) is the Swin-based structure with the most convolution operation, (m) is the NesT [47]/NesT-based VMLP
(NT), and (n) is our final RBViT/RBMLP (RB).

ViT/VMLP Clean
Accuracy

PGD
Auto-
Attack

Elem-
ents

Emb-
edding TM CMLP Norm

Skip-
Connect 1/255 2/255 3/255 1/255 2/255 3/255

(1) Ori Ori Ori LN Res 85.7/81.4 57.1/40.0 52.70/44.06 52.70/44.06 52.70/44.06 52.70/44.06 52.70/44.06
(2) - - - - NONE 72.5/80.5 36.9/40.3 11.6/19.0 2.1/7.4 36.7/39.6 10.5/17.6 1.5/6.5
(3) - - - NONE Res 84.3/82.1 57.3/44.9 24.5/16.7 8.2/4.9 54.7/43.5 23.4/15.4 6.8
(4) - - - - NONE 10/10 10/10 10/10 10/10 10/10 10/10 10/10
(5) - - NONE LN Res 78.2/61.4 40.6/39.7 17.8/20.3 4.8/8.4 37.8/38.5 16.5/18.7 3.2/6.9
(6) - - - - NONE 70.34/59.4 33.4/39.2 20.3/21.6 5.1/9.9 32.3/38.2 16.4/20.2 7.1/9
(7) - - - NONE Res 79.47/61.7 46.8/43.8 27.4/25.8 15.7/13 45.9/42.2 23.5/21.7 10.1/7.2
(8) - - - - NONE 45.38/58.9 31.2/41.9 14.5/25.7 6.9/13.5 34.1/39.5 22.5/21.9 9.6/8.7
(9) - - CONV LN Res 87.4/85.0 59.8/55.2 27.7/26.2 10.5/9.5 57.8/53.7 25.4/24.6 8.9/7.9

(10) - - - - NONE 79.36/10 41.6/10 22.3/10 9.8/10 53.4/51.7 23.7/21.2 8.9/10.2
(11) - - - NONE Res 87.4/85.2 59.8/58.9 32.9/31.2 11.2/9.5 53.4/51.7 22.8/21.2 9.2/6.4
(12) - - - - NONE 10/10 10/10 10/10 10/10 10/10 10/10 10/10
(13) CONV - Ori LN Res 88.1/84.6 46.4/41.9 13.8/10.9 3.0/2.0 42.4/40.1 11.3/9.1 2.4/1.7
(14) - - - - NONE 75.8/72.8 19.8/23.1 2.2/4.0 0.2/0.5 18.6/20.2 1.5/2.3 0/0
(15) - - - NONE Res 89.2/84.7 56.6/50.7 21.2/17.9 4.9/4.2 55.3/38.2 17.1/16.4 2.7/2.1
(16) - - - - NONE 10/10 10/10 10/10 10/10 10/10 10/10 10/10
(17) - - NONE LN Res 79.0/68.7 30.6/20.5 5.4/3.1 0.6/0.2 28.7/22.4 6.7/5.4 1.6/1.2
(18) - - - - NONE 73.8/67.4 17.1/21.2 1.0/3.2 0.6/0.3 15.4/19.2 1.2/0.6 0/0
(19) - - - NONE Res 80.9/68.4 45/38.4 14.5/14.0 2.6/3.4 43.1/36.7 13.2/12.8 2.1/3.2
(20) - - - - NONE 76.0/68.4 40.8/35.8 11.8/12.5 1.9/2.7 38.4/34.2 8.4/7.9 1.2/2.4
(21) - - CONV LN Res 89.8/88.1 59.2/59.9 24.0/27.9 6.8/9.6 58.7/58.4 22.4/21.9 5.9/6.0
(22) - - - - NONE 82.6/10 34.6/10 10.2/6.3 4.3/0 33.4/10 10.0/5.4 3.3/0
(23) - - - NONE Res 89.7/88.1 58.2/49.9 17.5/17.2 4.3/5.2 57.2/48.3 16.3/15.9 4.1/3.9
(24) - - - - NONE 10/10 10/10 10/10 10/10 10/10 10/10 10/10

Table A2: Results of the proposed 24 naturally trained structures. All results are shown in ViT accuracy
(%)/VMLP accuracy (%). All structures in this table only do not refer to various multi-hierarchy layer stacking
and all keep to be OriViT. The specific elements include (1) Embedding (ori/CONV); (2) TM block (Ori); (3) CMLP
block (Ori/CONV/NONE); (4) Norm (LN/NONE), and 5)Skip-Connection (Res/NONE).
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ViT/VMLP Clean
Accuracy

PGD
(8/255)

Auto-
Attack
(8/255)

Lipschitz
ConstantStru-

ctures
Emb-
edding TM CMLP Norm

Skip-
Connect

(1) Ori Ori Ori LN Res 79.93/66.38 52.70/44.06 51.45/43.10 157.7/164.7
(2) - - - - NONE 52.59/53.14 37.10/37.63 35.89/35.66 169.3/168.2
(3) - - - None Res 79.88/71.06 52.66/45.56 51.12/44.37 159.2/163.2
(4) - - - - NONE 10/10 10/10 10/10 0/0
(5) - - NONE LN Res 55.80/49.22 38.69/36.35 37.45/34.98 167.4/172.3
(6) - - - - NONE 56.45/50.34 39.26/36.15 39.56/34.96 165.1/173.9
(7) - - - NONE Res 58.88/49.89 42.25/36.35 41.76/35.89 152.4/173.3
(8) - - - - NONE 46.79/48.70 34.99/36.71 34.14/35.34 180.6/170.3
(9) - - CONV LN Res 81.66/77.58 54.69/51.00 53.85/50.88 152.7/157.5

(10) - - - - NONE 10/10 10/10 10/10 0/0
(11) - - - NONE Res 82.81/78.83 54.79/54.24 53.83/53.69 151.3/152.3
(12) - - - - NONE 10/10 10/10 10/10 0/0
(13) CONV - Ori LN Res 80.50/75.92 54.40/50.89 53.69/48.99 153.1/162.3
(14) - - - - NONE 64.75/62.08 44.49/42.14 43.47/41.81 163.2/166.7
(15) - - - NONE Res 82.77/77.86 55.85/53.22 54.98/52.89 151.4/155.8
(16) - - - - None 10/10 10/10 10/10 0/0
(17) - - NONE LN Res 71.12/56.11 48.35/41.13 47.78/39.89 161.3/168.2
(18) - - - - NONE 60.01/54.39 42.40/39.61 41.56/38.44 167.4/171.1
(19) - - - NONE Res 75.01/56.25 52.92/39.81 52.10/38.96 158.7/166.9
(20) - - - - NONE 64.61/55.80 46.80/41.31 46.90/40.65 163.4/161.5
(21) - - CONV LN Res 82.35/81.42 56.41/56.89 56.12/57.02 140.3/141.26
(22) - - - - NONE 15.53/10 10/10 10/10 0/0
(23) - - - NONE Res 80.57/79.25 55.63/53.81 54.23/52.45 146.3/148.5
(24) - - - - NONE 10/10 10/10 10/10 0/0

Table A3: Results of the proposed 24 adversarially trained structures in ViT/VMLP. All results are shown in ViT
accuracy (%)/VMLP accuracy (%). All structures in this table only do not refer to various multi-hierarchy layer
stacking, and all keep to be OriViT. The specific elements include (1) Embedding (ori/CONV), (2) TM block (Ori),
(3) CMLP block (Ori/CONV/NONE MLP); (4) Norm (LN/NONE), and (5)Skip-Connection (Res/NONE).


