Exploring the Limits of Deep Image Clustering using Pretrained Models

Nikolas Adaloglou^{*}, Felix Michels^{*}, Hamza Kalisch, Markus Kollmann

Heinrich-Heine-Universität Düsseldorf, Germany *Equal contribution {adaloglou,felix.michels}@hhu.de

Overview

hhu.

We present a general methodology that learns to classify images without labels by leveraging pretrained feature extractors. We focus on learning the cluster assignments with a novel objective called TEMI, which is based on

Derivation of the TEMI loss

• Approximate the **PMI** using the EMA $\tilde{q}_t(c)$ over $q_t(c|x')$. Introduce hyperparameter β to balance class utilization:

 $C \left(a^{i}(c|r)a^{i}(c|r')\right)^{\beta}$

pointwise mutual information and instance weighting within a multi-head self-distillation clustering framework.

Code: https://github.com/HHU-MMBS/TEMI-official-BMVC2023.

Main Contributions and Findings

- TEMI: A novel and theoretically justified clustering objective with a single **bounded** hyperparameter ($\beta \in (0.5, 1]$).
- Novel clustering framework with **consistent out-of-the-box** improvements across 17 visual backbones and 5 datasets over previous state-of-the-art methods.
- Existing self-supervised ViTs achieve state-of-the-art **clustering** accuracy of 61.6% and over-clustering AMI of 59.9% on **ImageNet**, without labels or external data.
- ViTs learn the most transferable label-related features when applied to new downstream datasets.

TEMI: Self-distillation clustering framework

$$\mathcal{L}^{i}(x, x') = -\log\sum_{c=1}^{\circ} \frac{\left(q_s(c|x)q_t(c|x)\right)}{\tilde{q}_t^{i}(c)},\tag{3}$$

2 Instance Weighted PMI (**WMPI**) using $q_t^i(c|x)$ to down-weight false positive pairs for each independent head i:

$$\mathcal{L}_{\text{WPMI}}^{i}(x, x') \coloneqq \underbrace{\sum_{c=1}^{C} q_{t}^{i}(c|x) q_{t}^{i}(c|x')}_{=:w_{i}(x, x')} \mathcal{L}^{i}(x, x'). \tag{4}$$

3 Teacher-Ensemble pMI (TEMI): aggregate $w_i(x, x')$ from multiple heads:

$$\mathcal{L}_{\text{TEMI}}^{i}(x, x') \coloneqq \frac{1}{H} \sum_{j=1}^{H} w_j(x, x') \mathcal{L}^{i}(x, x').$$
(5)

Experimental Results

TEMI involves self-distillation training of multiple clustering heads h (3-layer MLPs), based on the fact that nearest neighbors $(x' \text{ of } x \text{ from } S_x)$ in feature space of g likely share the same semantic label. Cluster predictions are denoted as $q_t^i(c|x), q_s^i(c|x)$ for the teacher t and student sfrom head i. EMA denotes an exponential moving average.

(1)

The pointwise mutual information (PMI) loss

We need to assign an image x to a cluster $c \in \{1, \ldots, C\}$. To do this we

TEMI achieves an average gain of 6.1% in clustering accuracy compared to k-means on ImageNet across 17 pretrained models. 2.8% improvement on ImageNet when substituting TEMI with SCAN.

Method	Arch.	$\overline{\text{ACC}}(\%)$	Me	ethod	Heads	CIFAR100	ImageNet
SeLa	Resnet50	30.5	k-r	neans	_	57.0	52.3
SCAN	Resnet50	39.9	SC	AN*	50	62.6	55.6
SSCN	Resnet50	41.1	PN	/[]	1	61.6	57.5
Our metho	od		W	PMI	1	63.4	56.5
TEMI DIN	IO Resnet50	45.2	PN	ΙI	50	63.1	57.7
TEMI DIN	IOViT-B/16	58.4	W	MI	50	65.6	57.0
TEMI MSI	N ViT-L/16	61.6	TE	EMI	50	67.1	58.4
Table 1: Clustering accuracy in %			Tab	Table 2: Ablations with DINO ViT-			

Table 2: Ablations with DINO ViT-

learn a classifier q(c|x) by maximizing the pointwise mutual information pmi(x, x') between images of the same class, defined by

$$pmi(x, x') \coloneqq \log \frac{q(x, x')}{p(x)p(x')} = \log \sum_{c=1}^{C} \frac{q(c|x)q(c|x')}{q(c)}.$$

Under mild conditions, this leads to an optimal solution.

Thm. 1 If (i) each example $x \sim p(x)$ belongs to one and only one cluster under the generative model $p(x) = \sum_{c} p(x|c)p(c)$, (ii) the joint distribution p(x, x') is known, and (iii) $q^*(c|x)$ is a probabilistic classifier defined by $q^*(c|x) = \arg\max_{q(c|x)} \mathbb{E}_{x,x' \sim p(x,x')}[\operatorname{pmi}(x,x')],$ (2)then $q^*(c|x)$ is equal to the optimal probabilistic classifier,

p(c|x) = p(x|c)p(c)/p(x), up to a permutation of cluster indices.

(ACC) for the ImageNet validation B/16. ACC is reported. set.

Discussion

- How expressive can a model be just by training with k-NN **pairs?** By training with the true positive pairs from the 50-NN, we report 98.6% and 84.1% training and validation accuracy on CIFAR100, which is only 1.2% lower compared to probing, validating Theorem 1.
- Impact of instance weighting. After training, w(x, x') has a mean value of 0.76 and 0.4 for the true and false positives.
- How discriminative are the cluster assignments of TEMI? We calculate a median max softmax probability of 99.2% on ImageNet.