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1 Proof of Theorem 1
We will first show that

q∗(c|x) = arg max
q(c|x)

Ex,x′∼p(x,x′)[pmi(x,x′)], (1)

is bounded and leads to the correct joint distribution.

Lemma 1. The mutual information

I(x;x′) =
∫

p(x,x′) log
p(x,x′)

p(x)p(x′)
dxdx′

is an upper bound for the expected pointwise mutual information. In particular,

Ex,x′∼p(x,x′)[pmi(x,x′)]

= I(x;x′)−KL(p(x,x′) ∥ q(x,x′)),

where KL is the Kullback–Leibler divergence.

Proof.

Ex,x′∼p(x,x′)[pmi(x,x′)]

=
∫

p(x,x′) log
q(x,x′)

p(x)p(x′)
dxdx′

=
∫

p(x,x′) log
(

p(x,x′)
p(x)p(x′)

q(x,x′)
p(x,x′)

)
dxdx′

=
∫

p(x,x′) log
p(x,x′)

p(x)p(x′)
dxdx′

−
∫

p(x,x′) log
p(x,x′)
q(x,x′)

dxdx′

= I(x;x′)−KL(p(x,x′) ∥ q(x,x′)).

For the proof of Theorem 1, we now assume that each example x belongs to exactly one
cluster c and need to show that the model q∗(c|x) maximizing the objective

q∗(c|x) = arg max
q(c|x)

Ex,x′∼p(x,x′)[pmi(x,x′)]

is equal to p(c|x) up to a permutation of the clusters.

Proof. Since p(c|x) is one-hot by assumption, let us denote the class to which an image x
belongs as cx, so that we have

p(c|x) = [c = cx],

where the Iverson bracket [c = cx] is 1 if c = cx and 0 otherwise. We denote the prediction of
the classifier by ĉx, with

ĉx := argmax
c

q∗(c|x).

An equivalent formulation of the theorem then is: q∗(c|x) is one-hot for every x and ĉx = ĉx′

if and only if cx = cx′ .
Using the same factorization we used to formulate the pointwise mutual information in

Equation (2) we obtain

p(x,x′)
p(x)p(x′)

=
C

∑
c=1

p(c|x)p(c|x′)
p(c)

= [cx = cx′ ]p(cx)
−1.

*Equal contribution.
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Lemma 1 already states that the objective is maximized if and only if q∗(x,x′) = p(x,x′)
and therefore

pmi(x,x′) =
C

∑
c=1

q∗(c|x)q∗(c|x′)
q∗(c)

=
q∗(x,x′)
p(x)p(x′)

=
p(x,x′)

p(x)p(x′)
= [cx = cx′ ]p(cx)

−1.

If cx ̸= cx′ , we have

0 ≤ q∗(ĉx|x)q∗(ĉx|x′)/q∗(ĉx)≤ pmi(x,x′) = 0.

Since q∗(ĉx|x)> 0, this implies q∗(ĉx|x′) = 0 and therefore ĉx ̸= ĉx′ . Furthermore, from the
pigeonhole principle it follows that q∗(c|x) = 0 for c ̸= cx which both implies that q∗(c|x) is
one-hot as well as ĉx = ĉx′ if cx = cx′ , therefore concluding the proof.

2 Further discussion points

2.1 Fine-tuning the pretrained backbone with TEMI

Given a pretrained backbone network, fine-tuning the backbone simultaneously with training
randomly initialized heads gave bad results. However, fine-tuning the backbone simultane-
ously with fine-tuning the already trained head with TEMI, yielded superior performance but
only when the pretraining dataset was different from the downstream dataset, e.g. 67.1→ 70.9
for CIFAR100 using DINO ViT-B/16 pretrained on ImageNet as the backbone model.

2.2 Additional computational complexity from multiple heads

In theory, the computational time complexity of TEMI by adding multiple heads is linear
given a sequential implementation. In practice, due to GPU-related optimizations, it’s much
faster. In fact, training on a single Nvidia A100 GPU takes only 4 GB of memory with 50
heads on CIFAR100 and training takes just about 45 minutes because we precompute the
feature representations, while training with just one head takes about 5 minutes.

2.3 Are multiple heads necessary?

The idea of using multiple heads is inspired by previous works, such as SCAN [5] and SSCN
[1]. The proposed PMI objective does not require multiple heads by design. As shown in
Table 3, we experimentally observed an initial gain of 0.8% by adding independent heads
(PMI and WMI setup with 50 heads). Importantly, one of our core novelties lies in the
combination of the teacher predictions from multiple heads, Eq. (10) in the main text, which
provides superior results compared to having independent heads (Table 3 in the main text).
Overall, we find the reported performances saturate quickly with more heads and are already
close to the maximum for 16 heads on CIFAR100. Based on our first results on CIFAR100,
we fixed the number of heads to 50 for all models and datasets.
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2.4 Contrastive versus non-contrastive self-supervised pretraining for
image clustering.

The performance gap between contrastive (MoCoV3 ViT-B) and non-contrastive (DINO
ViT-B) backbones likely originates from the homogeneous distribution of examples in feature
space as part of the contrastive learning objective, which likely attenuates the necessary
structure in feature space for image clustering [3, 6].

3 Additional implementation details.
To enforce reproducibility, the means and standard deviations are reported for all our ex-
periments and metrics, computed over 3 independent runs with different seeds. For a fair
comparison with SCAN, we tune its entropy regularization hyperparameter, λ , based on a
grid search and use the value λ = 4. Crucially, we found that some pretrained models (i.e.
MSN) produce unnormalized features. For that reason, we standardize the features of all
models before feeding them to the clustering heads. For the linear probing experiments, we
trained a linear layer using the Adam [4] optimizer with a learning rate of 10−3 and weight
decay of 10−3.

3.1 How to choose β for a new dataset?
Here we provide a more detailed explanation of Fig. 3 (in the main text) on how to pick
β ∈ (0.5,1] without access to ground-truth data. First, the motivation behind β is to avoid
the imbalanced growth of clusters during training. The closer β is to 0.5 the more balanced
the clusters (clusters contain a similar number of examples). The reason is that the loss
contribution to assign each training sample a single class is reduced for smaller β . However,
for β = 0.5, each sample occupies all clusters with equal probability. Consequently, we have
to impose β > 0.5 but β should be sufficiently close to 0.5. We take for β the value when the
conditional entropy, Ex[∑c−q(c|x)logq(c|x)] (Fig. 3 in the main text, green line), is starting
to become constantly low. We experimentally found 0.6 to work consistently well across
models and datasets. An exception is CIFAR20, where we used β = 0.55 since superclasses
are conceptually a form of under-clustering.

3.2 A Note on CIFAR100 VS CIFAR20
We observe that previous works have established the CIFAR20 as a clustering benchmark.
However, we believe that the CIFAR20 superclasses are not an ideal benchmark for image
clustering. In the reported results, one can easily notice that all models perform worse in
CIFAR20 than in CIFAR100. Examples that justify the performance gap include a) clocks,
computer keyboards, lamps, telephones, and televisions are grouped into household electrical
devices, b) bridges, castles, houses, roads, and skyscrapers are grouped into large man-made
outdoor things, and c) bears, leopards, lions, and wolfs are grouped into carnivores. These
examples illustrate that the superclasses are not separable from the pixel information alone.
To this end, we would like to encourage future works to adopt CIFAR100 as a benchmark for
image clustering.

Citation
Citation
{Huang, Chen, Zhang, and Shan} 2022

Citation
Citation
{Wang and Isola} 2020

Citation
Citation
{Kingma and Ba} 2014



4 ADALOGLOU ET AL.: EXPLORING THE LIMITS OF DEEP IMAGE CLUSTERING

0 20 40 60 80 100
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

(a) CIFAR100 using TEMI DINO ViT-B/16
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(b) ImageNet using TEMI MSN ViT-L/16
Figure 1: Histogram of cluster assignments on different datasets. The horizontal red
line illustrates the ideal histogram, where all clusters would be uniformly utilized. We
also compute the KL divergence between the predictions and the uniform distribution on
CIFAR100 and ImageNet, which is 1.5 · 10−2 and 5 · 10−2, respectively. The predictions
would be uniform in the extreme case where the KL divergence is 0.

Methods NMI(%) ACC(%) ARI(%)
TEMI DINO ViT-B/16 76.9±0.45 67.1±1.30 53.3±1.02
TEMI MSN ViT-L/16 73.0±0.20 61.4±0.16 47.4±0.42
(natural language) supervised pretraining
TEMI CLIP ViT-L/14 79.9±0.23 73.7±0.92 61.2±0.75
TEMI Sup. ViT-L/16 85.2±0.34 81.8±0.73 70.6±0.89
supervised baselines
Probing DINO ViT-B/16 85.7 85.3 73.6
Probing MSN ViT-L/16 84.6 84.4 71.9
Probing CLIP ViT-L/14 87.4 87.1 76.5
Probing Sup. ViT-L/16 86.0 86.3 75.0

Table 1: Clustering performance metrics on on the CIFAR100 dataset. All methods use
models pretrained on external data.
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Datasets ImageNet CIFAR100

Methods TEMI k-means TEMI k-means
self-supervised methods
MAE ViT-B/16 9.09±0.05 4.93 7.78±0.10 7.11
MAE ViT-L/16 27.81±0.13 12.45 19.56±0.17 12.05
MAE ViT-H/16 22.34±0.11 10.18 17.64±0.19 11.31
MOCOv3 ViT-S/16 16.73±0.19 12.23 16.58±0.16 13.63
MOCOv3 ViT-B/16 54.10±0.08 47.64 63.51±0.53 49.94
DINO Resnet50 45.20±0.23 32.07 45.34±0.41 34.21
DINO ViT-S/16 56.84±0.25 51.84 61.69±0.75 50.17
DINO ViT-B/16 58.08±0.26 52.26 67.11±1.30 57.01
MSN ViT-S/16 58.53±0.39 55.58 63.06±0.89 49.96
MSN ViT-B/16 60.82±0.06 57.56 65.57±1.23 50.60
MSN ViT-L/16 61.56±0.28 58.08 61.40±0.15 54.08
natural language supervised methods
CLIP Resnet50 45.93±0.11 34.41 34.06±0.72 25.96
CLIP ViT-B/16 56.68±0.24 45.86 60.74±0.79 45.84
CLIP ViT-L/14 63.99±0.38 54.12 73.70±0.92 54.55
supervised methods
Resnet50 72.60±0.18 65.69 49.77±0.43 40.28
ConvNext S 77.67±0.41 71.85 57.31±0.20 43.19
ConvNext B 78.23±0.12 73.67 58.31±0.76 43.20
ConvNext L 79.77±0.20 76.98 59.43±0.24 47.94
ViT-S/16 64.72±0.14 60.32 60.60±0.97 50.65
ViT-B/16 69.23±0.27 64.48 63.36±0.43 51.72
ViT-L/16 77.12±0.21 74.91 81.77±0.73 70.06

Table 2: Benchmarking various models with the introduced objective versus k-means.
We report the clustering accuracy (ACC) in %

Datasets ImageNet 50 ImageNet 100 ImageNet 200

Methods NMI(%) ACC(%) ARI(%) NMI(%) ACC(%) ARI(%) NMI(%) ACC(%) ARI(%)
SCAN (Resnet50) 82.2 76.8 66.1 80.8 68.9 57.6 77.2 58.1 47.0
Propos (Resnet50) 82.8 - 69.1 83.5 - 63.5 80.6 - 53.8
TEMI DINO ViT-B/16 86.10±0.54 80.01±1.26 70.93±1.24 85.65±0.30 75.05±1.11 65.45±1.11 85.20±0.21 73.12±0.72 62.13±0.59
TEMI MSN ViT-L/16 88.14±0.55 84.87±1.16 76.46±1.17 88.53±0.56 82.86±0.73 74.08±1.20 86.65±0.32 77.96±0.71 66.70±0.71
(natural language) supervised pretraining
TEMI CLIP ViT-L/14 92.32±0.38 88.27±0.53 82.78±0.94 90.06±0.53 83.43±1.98 75.81±1.36 88.39±0.16 77.76±0.37 69.41±0.23
TEMI Sup. ViT-L/16 95.75±0.60 95.12±1.61 91.40±1.88 94.95±0.21 92.50±0.23 87.95±0.31 93.94±0.02 90.37±0.14 84.05±0.09
supervised baselines
Probing DINO ViT-B/16 95.10 95.76 91.64 93.29 92.74 86.30 91.64 89.48 80.61
Probing MSN ViT-L/16 94.21 94.92 90.03 93.00 92.42 85.74 91.36 89.02 79.88
Probing CLIP ViT-L/14 98.72 98.96 97.88 96.61 96.16 92.73 95.09 93.57 88.00
Probing Sup. ViT-L/16 97.77 98.12 96.21 96.13 95.76 91.90 95.07 93.60 88.02

Table 3: Clustering performances on ImageNet subsets. All subsets were evaluated on
their respective validation splits, as detailed in Table 4.
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Dataset Classes Train images Val images Size

CIFAR10 10 50,000 10,000 32 × 32
CIFAR100 100 50,000 10,000 32 × 32
CIFAR20 20 50,000 10,000 32 × 32
STL10 10 5,000 8,000 96 × 96
ImageNet-50 50 64,274 2,500 224 × 224
ImageNet-100 100 128,545 5,000 224 × 224
ImageNet-200 200 256,558 10,000 224 × 224
ImageNet 1000 1,281,167 50,000 224 × 224

Table 4: An overview of the number of classes and the number of samples on the
considered datasets. The train set is used for training, while the validation split is used to
compute the clustering performance metrics. The selected classes on the ImageNet [2] subsets
(ImageNet-50, ImageNet-100, and ImageNet-200) can be found in SCAN [5].

config value
optimizer AdamW

base learning rate 10−4

weight decay 10−4

optimizer momentum β1,β2=0.9,0.999
batch size 512, 1024 (ImageNet)

learning rate schedule constant
softmax temperature τ 0.1

β 0.6, 0.55 (CIFAR20)
cluster heads 50

warmup epochs 20, 10 ImageNet
training epochs 200, 800 (STL10)

teacher momentum 0.996
augmentation None

Table 5: Hyperparameters for training the clustering heads.

config value
optimizer Adam

learning rate 10−3

weight decay 10−3

optimizer momentum β1,β2=0.9,0.999
batch size 256

learning rate schedule cosine decay
training epochs 100
augmentation None

Table 6: Hyperparameters for linear probing.
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4 Randomly sampled images

Figure 2: Randomly sampled images from the ImageNet dataset that are assigned in the
same cluster using the TEMI MSN ViT-L/16 model. The ground-truth label is indicated in
the text under the image. The images in each row are assigned to the same cluster. The first
four columns correspond to correctly classified images while the last four are examples of
misclassified images.
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Figure 3: More randomly sampled images from the ImageNet dataset that are assigned
in the same cluster.
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