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1 Details of Projection Heads and Predictors

The projection head is composed of “fc-bn-relu-fc”, where fc denotes a fully-
connected layer, bn is a batch normalization layer and re 1u is the ReLU activation function.
The hidden dimension of the projection head is 2048 and the output dimension is also 2048.
The predictor consists of “fc—bn—-relu—-fc” which has a bottleneck structure. The hidden
dimension of the predictor is 1/4 of the output dimension and the output dimension is 2048.

We also conduct experiments to investigate the effects of projection heads and projectors.
We employ resnet32 as the student and resnet1 10 as the teacher. The experimental results are
provided in Table 1. As we can see, CoCoRD needs both projection heads and predictors for
boosting the student. The experimental results also demonstrate that it is important to distill
in a representation space.

2 Network Architectures

We provide the information about the network architectures we used in experiments.
WRN-d-w represents Wide Residual Network [22] with depth d and width factor w.
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w/ projection heads w/o projection heads

w/ predictor ~ w/o predictor ~w/ predictor ~w/o predictor
mean 74.10 73.43 72.83 73.34
std 0.14 0.04 0.18 0.11

Table 1: The effects of projection heads or predictors. Note that “w/o projection heads” means we
remove all the projection heads. The reported results are Top-1 accuracy (%) on CIFAR100. The
best results are shown in bold. Average over 5 runs. mean denotes the average and std stands for the
corresponding standard deviation.

resnet-d is CIFAR-style resnet [4] with 3 groups of basic blocks.

ResNet-d represents ImageNet-style ResNet [4] with more channels.
MobileNetV2 [15]. We set the width multiplier to 0.5.

vgg-d denotes vgg [16] with depth d adapted from its ImageNet counterpart.
ShuffleNetV1 [24] and ShuffleNetV2 [9] are adapted to input of size 32x32.

3 Study of momentum

my 0.9 0 0.99 0.999 0.9999 1
me 0 09 099 0.999 0.9999 1 0.999

mean  72.87 73.34 73.89 7410 7370 73.80  73.80 73.65 73.54 7293 72.86
std 032 023 024 014 032 0.12 025 022 052 040 050

Table 2: CIFARI100 test accuracy (%) of student resnet32 trained with different combinations of m,
and m,. The best performance and the corresponding m. and m, are shown in bold. The teacher is
resnet]110 and the accuracy of vanilla student and the teacher can be found in Table 6. mean denotes the
average over 5 runs and std stands for the standard deviation.

As shown in Formulas 3 and 4 of the main paper, m. controls the progressing speed of
the teacher projection head f, while m, manages the speed of the slow-moving student and
its projection head. To investigate the impact of momentum, we employ resnetl 10 as the
teacher to train resnet32 with different m, and m,. The results are reported in Table 2. With
m, fixed, a large value of m, (e.g. 0.99 or 0.999) works better than m.=0, suggesting that
consistent representations in the teacher dictionary are beneficial for the distillation. With m,
fixed, CoCoRD consistently performs well when m, is relatively large (e.g. 0.999, 0.9999).
This observation indicates CoOCoRD benefits from the slow-progressing f7 (i.e. large m,).

4 Simple grid search on balancing factors

We conduct experiments to investigate the effects of the three balancing factors A, A, and
/'L,,,ed. We use resnet32-resnetl 10 as the student-teacher combination. For experiments on
balancing factors, we set 7=0.1, N=2048, m.=0.999 and m,=0.9.

To investigate the effects of A4, Aty and Acg are set to 1. The results are provided in
Table 3. To investigate the effects of Ac;y, Ayreq is set to 4 and A is set to 1. The results are
shown in Table 4. To investigate the effects of A¢j, A,req is set to 4 and A, is set to 1. The
results are shown in Table 5. Based on the experimental results above, A.,=1, A;=1 and
Aprea=4 are chosen as the default setting for CoCoRD on CIFAR100 and ImageNet.
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Apred O 05 10 20 40 80
mean 7292 7361 7353 7392 7410 73.36
std 023 028 031 0.9 014 026

Table 3: The effects of A,.q. We set Ay, and A to 1. CIFAR100 test accuracy (%) is reported. The
best performance is shown in bold. Average over 5 runs. mean denotes the average and std stands for
the corresponding standard deviation.

Aatr 0 05 1.0 20 40 80
mean 7181 73.12 7410 7394 7361 7323
std 042 027 014 022 029 037

Table 4: The effects of A.;r. We set Apyeq to 4 and Ay to 1. CIFAR100 test accuracy (%) is reported.
The best performance is shown in bold. Average over 5 runs. mean denotes the average and std stands
for the corresponding standard deviation.

5 Details for experiments on CIFAR100

For all experiments on CIFAR100, we use SGD optimizer with momentum 0.9 to train the
students with CoCoRD. A.;,=1, A.s=1 and A,,.4=4. The training batch size is set to 64 and
the weight decay is set to 5x10~*. For experiments in Table 1 of the main paper, we initialize
the learning rate as 0.05 and decay the learning rate by 0.1 at the {150, 180, 210}-th epochs.
For experiments in Table 2 of the main paper, we use a learning rate of 0.015 for Mo-
bileNetV2, a learning rate of 0.03 for ShuffleNetV1 and ShuffleNetV2 and a learning rate
of 0.05 for vgg8 based on simple grid searches. Each learning rate is also multiplied by
0.1 at {150, 180, 210}-th epochs. Images of size 32x32 are randomly cropped from zero-
padded 40x40 images and are horizontally flipped with a probability of 0.5. The independent
transformation for a different view of the input is sampled from this data augmentation.

6 Standard deviation of CoCoRD on CIFAR100

The standard deviation of CoCoRD over 5 runs on CIFAR100 dataset is provided in Table 6
for student and teacher models of the same architecture style, and in Table 7 for student and
teacher models of different architecture style.

7 Details for linear probing

For experiments in Table 3 of the main paper, we initialize the learning rate as 0.001. We use
SGD optimizer with momentum 0.9 and the weight decay is set to 0. We freeze the features
and train a supervised linear classifier on the global average pooling features for 100 epochs.
8 Details for experiments on ImageNet

For experiments on ImageNet with ResNet18 or ResNet50, we follow the standard PyTorch

practice but train for 100 epochs in total. The learning rate starts at 0.1 and the batch size is
set to 256. Note that we only compute L. on ImageNet. A.,=1, A.s=1 and A,,,.4=4.
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Aas 05 1.0 20 40 80
mean 7397 7410 73.03 72.53 71.89
std 026 014 031 032 024

Table 5: The effects of A.;. We set Ao to 4 and Ay, to 1. CIFARI100 test accuracy (%) is reported.
The best performance is shown in bold. Average over 5 runs. mean denotes the average and std stands
for the corresponding standard deviation.

Teacher 'WRN-40-2 WRN-40-2 resnet56 resnet110 resnet110 resnet32x4 vggl3
Student WRN-16-2 WRN-40-1 resnet20 resnet20 resnet32 resnet8x4 vges
Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36

CoCoRD (ours) 7548 (£0.16)  75.17 (£0.17) 7174 (£0.11)  72.11 (+0.29) 74.10 (£0.14) 75.29 (£0.07) 73.99 (+0.13)
CoCoRD+KD  75.90 (£0.05) 75.25 (+0.14) 72.09 (£0.31) 72.18 (+0.07) 74.37 (£0.18) 75.42 (£0.16) 74.26 (£0.11)

Table 6: Test accuracy (%) of students on CIFAR100 of CoCoRD. Standard deviation is provided.

Teacher vggl3 ResNet50 ResNet50 resnet32x4 resnet32x4 WRN-40-2
Student MobileNetV2 MobileNetV2 vgg8 ShuffleNetV1 ShuffleNetV2  ShuffleNetV1
Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.60 64.60 70.36 70.50 71.82 70.50

CoCoRD (ours)  69.86 (£0.22) 70.22 (£0.07) 74.52(£0.12) 75.99 (£0.12) 77.28 (£0.08) 76.42 (£0.10)
CoCoRD+KD  69.90 (£0.25)  70.30 (£0.19) 74.62 (£0.10) 76.48 (+0.23)  77.39 (£0.04) 76.56 (+0.26)

Table 7: Test accuracy (%) of students on CIFAR100 of CoCoRD. Standard deviation is provided.

9 Details for experiments on Object Detection

We initialize the backbones of the object detection models with the CoCoRD-distilled
ResNet50. The teacher is ResNet101 during CoCoRD distillation.

9.1 PASCAL VOC object detection

The detector is Faster R-CNN [13] with a backbone of R50-C4 which is available in Detec-
tron2. The backbone ends with the conv, stage and the box prediction head consists of the
convs stage (including global pooling) followed by a BN layer. The same setup is applied to
all entries in PASCAL VOC detection in Table 7 of the main paper. The detector is fine-tuned
on VOC trainval07+12 for 24k iterations in an end-to-end manner. We evaluate the
default VOC metric of APsg and COCO-style metrics of AP and AP75. The evaluation is on
the VOC test2007. The image is [480, 800] pixels during training and 800 at inference.

9.2 COCO object detection

The detector is Mask R-CNN [5] with R50-C4 backbone. The image is in [640,800] pixels
during training and is 800 at inference. We fine-tune the detector on the COCO train2017
in an end-to-end manner and evaluate on COCO val2017. The schedule is 2x as in [19].

10 Other methods

We compare CoCoRD with the following state-of-the-art methods from the literature.
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» KD: Distilling the knowledge in a neural network [7]
 FitNet: FitNets: Hints for Thin Deep Nets [14]

* AT: Paying More Attention to Attention: Improving the Performance of Convolutional
Neural Networks via Attention Transfer [23]

e SP: Similarity-preserving knowledge distillation [18]

* CC: Correlation congruence for knowledge distillation [12]

* VID: Variational information distillation for knowledge transfer [1]

* RKD: Relational knowledge distillation [10]

* PKT: Learning deep representations with probabilistic knowledge transfer [11]

* AB: Knowledge transfer via distillation of activation boundaries formed by hidden
neurons [6]

* FT: Paraphrasing complex network: Network compression via factor transfer [8]

* FSP: A gift from knowledge distillation: Fast optimization, network minimization and
transfer learning [21]

* CRD: Contrastive Representation Distillation [17]
* LCKT, WCoRD: Wasserstein contrastive representation distillation [2]
* ReviewKD: Distilling Knowledge via Knowledge Review [3]

* SSKD: Knowledge Distillation Meets Self-Supervision [20]

11 Quantitative results on the achieved speed-up, memory
reduction and others

In the following three tables, we provide quantitative results on the achieved speed-up,
memory cost reduction, and other quantitative information about the teacher/student (T/S)
combinations used on CIFAR100 (in Tabs. 1 and 2) and those T/S combinations used on
ImageNet (Tabs. 4 and 8). The results are measured with Intel Core i7-8700 CPU on Ubuntu
20.04 operating system and memory cost is measured by Pytorch Profiler in a forward pass.

Additionally, we compare the size of the teacher dictionary in the proposed CoCoRD
with the size of the memory banks in CRD. Note that the keys in CRD memory banks are
only 128-d while the keys in the proposed CoCoRD teacher dictionary are 2048-d. Even with
higher dimensions of the stored keys, CoCoRD are still more storage efficient.
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Combination(T/S) Inference Latency (ms) Speed-up Memory Cost (MB) Mult-Add Parameters (K)
WRN-40-2 / WRN-16-2 21.28/7.98 62.50% 11.73/4.39 327.62M / 101.12M 2255/703
WRN-40-2 / WRN-40-1 21.28/10.51 50.61% 11.73/5.87 327.62M / 83.29M 22557570

resnet56 / resnet20 21.75/11.48 47.22% 8.72/3.21 125.76M / 40.82M 862/278

resnet] 10 / resnet20 56.09/11.48 79.53% 16.97/3.21 253.16M / 40.82M 17377278
resnet]110 / resnet32 56.09/17.01 69.67% 16.97/5.05 253.16M / 69.13M 17371473
resnet32x4 / resnet8x4 24.93/7.52 69.84% 20.71/6.03 1.08G/ 177.07M 7434 /1234
vggl3/vgg8 8.72/3.89 55.39% 4.20/2.10 285.2M/96.33M 9462 / 3965

Table 8: Quantitative results on the achieved speed-up, parameter compression and memory cost
reduction. The combinations are from Tab. 1 of the main paper. The inference latency is measured on
image of size 32x32.

Combination(T/S) Inference Latency (ms) Speed-up Memory Cost (MB) Mult-Add Parameters (K)
Vggl3 / MobileNetV2 8.72/14.97 - 420/3.39 285.2M/ 6.54M 9462/ 813
ResNet50 / MobileNetV2 17.01/14.97 11.99% 3.63/3.39 83.67TM / 6.54M 23713 /813
ResNet50 / vgg8 17.01/3.89 77.13% 3.63/2.10 83.67TM/96.33M 23713 /3965
resnet32x4 / ShuffleNetV 1 24.93/31.84 - 20.71/13.90 1.08G / 38.72M 7434 /949
resnet32x4 / ShuffleNetV2 24.93/19.01 23.75% 20.71/9.01 1.08G / 44.52M 743411356
WRN-40-2 / ShuffleNetV 1 21.28/31.84 - 11.73/13.90 327.62M / 38.72M 22557949

Table 9: Quantitative results on the achieved speed-up, parameter compression and memory cost
reduction. The combinations are from Tab. 2 of the main paper. The inference latency is measured on
image of size 32x32.

Combination(T/S) Inference Latency (ms) Speed-up Memory Cost (MB) Mult-Add Parameters (M)

ResNet34 / ResNet18 43.97/28.52 35.14% 59.82/39.75 3.66G/1.81G  21.80/11.69
ResNet101 / ResNet50 104.37/50.84 51.29% 259.72/177.83 7.80G/4.09G  44.55/25.56

Table 10: Quantitative results on the achieved speed-up, parameter compression and memory cost
reduction. The combinations are from Tabs. 4 and 6 of the main paper. The inference latency is
measured on image of size 224x224.

CRD CoCoRD  Relative Size

CIFAR100  51.20MB 16.78MB 32.77%
ImageNet  1311.92MB  536.87MB 40.92%

Table 11: Comparison on the size of memory bank(s). Note that there is one teacher dictionary in the
proposed CoCoRD while there are two memory banks in CRD.

12 Theoretical study

Given two deep neural networks, a teacher f7 and a student f5, and let x be the network
input. We denote representations at the penultimate layer as f7 (x) and f5(x), respectively.
We would like to bring £5(x;) and f7 (x;) close while pushing apart f5(x;) and f7 (x;) (x; and
x; represent different training samples).

For clear notation, we define variables S and T for the student representations and the
teacher ones of the data, respectively: x ~ px); S = f5(x); T = f7 (x).

Let us define a distribution g with variable C. The latent variable C decides whether the
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tuple (f5(x;), f7 (x;)) is drawn form the joint distribution p(7,S) (when C=1) or drawn from
the product of marginal distributions p(S)p(T) (when C=0).

q(T,S|C = 1) = p(T,S),q(T,S|C = 0) = p(T)p(S)

Suppose we are given 1 congruent pair drawn from the joint distribution (i.e. the same input
provided to T and S) for every N incongruent pairs drawn from the product of marginals
(independent randomly inputs provided to T and S). Then the priors on the latent C are:

1 N

C=1)=——,q(C=0)=——.
9(C=1=5"74(C=0 =5
By Bayes’ rule and simple manipulations, the posterior for C = 1 is given by:

q(T,S|Ic=1)q(C=1) _ )
q(T,S|C = 0)q(C =0)+¢(T,S|C=1)g(C=1)  p(T,S)+Np(T)p(S)

q(C=1|T,S) =
We can observe a connection with mutual information:

~ - p(T)p(S) p(T.5)
logg(C =1|T,S) = —log(1 +NW) < —log(N) +log PT)p(S):

Taking expectation on both sides w.r.t p(7,S) and rearranging gives us:
I(T;S) = 10g(N) + Ey(r 51c=1) logq(C = 1]T,S),

where I(T';S) is the mutual information between the distributions of the teacher and student
representations. Though we do not know the true distribution g(C = 1|7, S), a neural network
can be used to estimate whether a pair comes from the joint distribution or the marginals.

By maximizing KL divergence between the joint distribution p(7T,S) and the product
of marginal distributions p(T)p(S), we can maximize the mutual information between the
student representations and the teacher representations.
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