
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045

AUTHOR(S): SUPPLEMENTARY MATERIAL 1

Contrastive Consistent
Representation Distillation
supplementary material

BMVC 2023 Submission #

Abstract

These items are contained in the supplementary material:
1. Details of projection heads and predictors.
2. Network architectures.
3. Study of momentum.
4. Simple grid search on balancing factors.
5. Study of loss terms
6. Details for experiments on CIFAR100.
7. Standard Deviation of CoCoRD on CIFAR100.
8. Details for linear probing.
9. Details for experiments on ImageNet.
10. Details for experiments on object detection.
11. Other methods
12. Quantitative results on the speed-up, memory reduction and others
13. Theoretical study

1 Details of Projection Heads and Predictors
The projection head is composed of “fc-bn-relu-fc”, where fc denotes a fully-
connected layer, bn is a batch normalization layer and relu is the ReLU activation function.
The hidden dimension of the projection head is 2048 and the output dimension is also 2048.
The predictor consists of “fc-bn-relu-fc” which has a bottleneck structure. The hidden
dimension of the predictor is 1/4 of the output dimension and the output dimension is 2048.

We also conduct experiments to investigate the effects of projection heads and projectors.
We employ resnet32 as the student and resnet110 as the teacher. The experimental results are
provided in Table 1. As we can see, CoCoRD needs both projection heads and predictors for
boosting the student. The experimental results also demonstrate that it is important to distill
in a representation space.

2 Network Architectures
We provide the information about the network architectures we used in experiments.

WRN-d-w represents Wide Residual Network [22] with depth d and width factor w.

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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w/ projection heads w/o projection heads

w/ predictor w/o predictor w/ predictor w/o predictor

mean 74.10 73.43 72.83 73.34

std 0.14 0.04 0.18 0.11

Table 1: The effects of projection heads or predictors. Note that “w/o projection heads” means we
remove all the projection heads. The reported results are Top-1 accuracy (%) on CIFAR100. The
best results are shown in bold. Average over 5 runs. mean denotes the average and std stands for the
corresponding standard deviation.

resnet-d is CIFAR-style resnet [4] with 3 groups of basic blocks.
ResNet-d represents ImageNet-style ResNet [4] with more channels.
MobileNetV2 [15]. We set the width multiplier to 0.5.
vgg-d denotes vgg [16] with depth d adapted from its ImageNet counterpart.
ShuffleNetV1 [24] and ShuffleNetV2 [9] are adapted to input of size 32x32.

3 Study of momentum

mr 0.9 0 0.99 0.999 0.9999 1

mc 0 0.9 0.99 0.999 0.9999 1 0.999

mean 72.87 73.34 73.89 74.10 73.70 73.80 73.80 73.65 73.54 72.93 72.86

std 0.32 0.23 0.24 0.14 0.32 0.12 0.25 0.22 0.52 0.40 0.50

Table 2: CIFAR100 test accuracy (%) of student resnet32 trained with different combinations of mc
and mr. The best performance and the corresponding mc and mr are shown in bold. The teacher is
resnet110 and the accuracy of vanilla student and the teacher can be found in Table 6. mean denotes the
average over 5 runs and std stands for the standard deviation.

As shown in Formulas 3 and 4 of the main paper, mc controls the progressing speed of
the teacher projection head f p

t , while mr manages the speed of the slow-moving student and
its projection head. To investigate the impact of momentum, we employ resnet110 as the
teacher to train resnet32 with different mc and mr. The results are reported in Table 2. With
mr fixed, a large value of mc (e.g. 0.99 or 0.999) works better than mc=0, suggesting that
consistent representations in the teacher dictionary are beneficial for the distillation. With mr
fixed, CoCoRD consistently performs well when mc is relatively large (e.g. 0.999, 0.9999).
This observation indicates CoCoRD benefits from the slow-progressing f p

t (i.e. large mc).

4 Simple grid search on balancing factors
We conduct experiments to investigate the effects of the three balancing factors λctr, λcls and
λpred . We use resnet32-resnet110 as the student-teacher combination. For experiments on
balancing factors, we set τ=0.1, N=2048, mc=0.999 and mr=0.9.

To investigate the effects of λpred , λctr and λcls are set to 1. The results are provided in
Table 3. To investigate the effects of λctr, λpred is set to 4 and λcls is set to 1. The results are
shown in Table 4. To investigate the effects of λcls, λpred is set to 4 and λctr is set to 1. The
results are shown in Table 5. Based on the experimental results above, λctr=1, λcls=1 and
λpred=4 are chosen as the default setting for CoCoRD on CIFAR100 and ImageNet.
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λpred 0 0.5 1.0 2.0 4.0 8.0

mean 72.92 73.61 73.53 73.92 74.10 73.36

std 0.23 0.28 0.31 0.19 0.14 0.26

Table 3: The effects of λpred . We set λctr and λcls to 1. CIFAR100 test accuracy (%) is reported. The
best performance is shown in bold. Average over 5 runs. mean denotes the average and std stands for
the corresponding standard deviation.

λctr 0 0.5 1.0 2.0 4.0 8.0

mean 71.81 73.12 74.10 73.94 73.61 73.23

std 0.42 0.27 0.14 0.22 0.29 0.37

Table 4: The effects of λctr. We set λpred to 4 and λcls to 1. CIFAR100 test accuracy (%) is reported.
The best performance is shown in bold. Average over 5 runs. mean denotes the average and std stands
for the corresponding standard deviation.

5 Details for experiments on CIFAR100
For all experiments on CIFAR100, we use SGD optimizer with momentum 0.9 to train the
students with CoCoRD. λctr=1, λcls=1 and λpred=4. The training batch size is set to 64 and
the weight decay is set to 5x10−4. For experiments in Table 1 of the main paper, we initialize
the learning rate as 0.05 and decay the learning rate by 0.1 at the {150, 180, 210}-th epochs.

For experiments in Table 2 of the main paper, we use a learning rate of 0.015 for Mo-
bileNetV2, a learning rate of 0.03 for ShuffleNetV1 and ShuffleNetV2 and a learning rate
of 0.05 for vgg8 based on simple grid searches. Each learning rate is also multiplied by
0.1 at {150, 180, 210}-th epochs. Images of size 32x32 are randomly cropped from zero-
padded 40x40 images and are horizontally flipped with a probability of 0.5. The independent
transformation for a different view of the input is sampled from this data augmentation.

6 Standard deviation of CoCoRD on CIFAR100
The standard deviation of CoCoRD over 5 runs on CIFAR100 dataset is provided in Table 6
for student and teacher models of the same architecture style, and in Table 7 for student and
teacher models of different architecture style.

7 Details for linear probing
For experiments in Table 3 of the main paper, we initialize the learning rate as 0.001. We use
SGD optimizer with momentum 0.9 and the weight decay is set to 0. We freeze the features
and train a supervised linear classifier on the global average pooling features for 100 epochs.

8 Details for experiments on ImageNet
For experiments on ImageNet with ResNet18 or ResNet50, we follow the standard PyTorch
practice but train for 100 epochs in total. The learning rate starts at 0.1 and the batch size is
set to 256. Note that we only compute Lpred on ImageNet. λctr=1, λcls=1 and λpred=4.

https://github.com/pytorch/examples/tree/main/imagenet
https://github.com/pytorch/examples/tree/main/imagenet
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λcls 0.5 1.0 2.0 4.0 8.0

mean 73.97 74.10 73.03 72.53 71.89

std 0.26 0.14 0.31 0.32 0.24

Table 5: The effects of λcls. We set λpred to 4 and λctr to 1. CIFAR100 test accuracy (%) is reported.
The best performance is shown in bold. Average over 5 runs. mean denotes the average and std stands
for the corresponding standard deviation.

Teacher
Student

WRN-40-2
WRN-16-2

WRN-40-2
WRN-40-1

resnet56
resnet20

resnet110
resnet20

resnet110
resnet32

resnet32x4
resnet8x4

vgg13
vgg8

Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36

CoCoRD (ours) 75.48 (±0.16) 75.17 (±0.17) 71.74 (±0.11) 72.11 (±0.29) 74.10 (±0.14) 75.29 (±0.07) 73.99 (±0.13)
CoCoRD+KD 75.90 (±0.05) 75.25 (±0.14) 72.09 (±0.31) 72.18 (±0.07) 74.37 (±0.18) 75.42 (±0.16) 74.26 (±0.11)

Table 6: Test accuracy (%) of students on CIFAR100 of CoCoRD. Standard deviation is provided.

Teacher
Student

vgg13
MobileNetV2

ResNet50
MobileNetV2

ResNet50
vgg8

resnet32x4
ShuffleNetV1

resnet32x4
ShuffleNetV2

WRN-40-2
ShuffleNetV1

Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.60 64.60 70.36 70.50 71.82 70.50

CoCoRD (ours) 69.86 (±0.22) 70.22 (±0.07) 74.52 (±0.12) 75.99 (±0.12) 77.28 (±0.08) 76.42 (±0.10)
CoCoRD+KD 69.90 (±0.25) 70.30 (±0.19) 74.62 (±0.10) 76.48 (±0.23) 77.39 (±0.04) 76.56 (±0.26)

Table 7: Test accuracy (%) of students on CIFAR100 of CoCoRD. Standard deviation is provided.

9 Details for experiments on Object Detection
We initialize the backbones of the object detection models with the CoCoRD-distilled
ResNet50. The teacher is ResNet101 during CoCoRD distillation.

9.1 PASCAL VOC object detection
The detector is Faster R-CNN [13] with a backbone of R50-C4 which is available in Detec-
tron2. The backbone ends with the conv4 stage and the box prediction head consists of the
conv5 stage (including global pooling) followed by a BN layer. The same setup is applied to
all entries in PASCAL VOC detection in Table 7 of the main paper. The detector is fine-tuned
on VOC trainval07+12 for 24k iterations in an end-to-end manner. We evaluate the
default VOC metric of AP50 and COCO-style metrics of AP and AP75. The evaluation is on
the VOC test2007. The image is [480, 800] pixels during training and 800 at inference.

9.2 COCO object detection
The detector is Mask R-CNN [5] with R50-C4 backbone. The image is in [640,800] pixels
during training and is 800 at inference. We fine-tune the detector on the COCO train2017
in an end-to-end manner and evaluate on COCO val2017. The schedule is 2x as in [19].

10 Other methods
We compare CoCoRD with the following state-of-the-art methods from the literature.
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• KD: Distilling the knowledge in a neural network [7]

• FitNet: FitNets: Hints for Thin Deep Nets [14]

• AT: Paying More Attention to Attention: Improving the Performance of Convolutional
Neural Networks via Attention Transfer [23]

• SP: Similarity-preserving knowledge distillation [18]

• CC: Correlation congruence for knowledge distillation [12]

• VID: Variational information distillation for knowledge transfer [1]

• RKD: Relational knowledge distillation [10]

• PKT: Learning deep representations with probabilistic knowledge transfer [11]

• AB: Knowledge transfer via distillation of activation boundaries formed by hidden
neurons [6]

• FT: Paraphrasing complex network: Network compression via factor transfer [8]

• FSP: A gift from knowledge distillation: Fast optimization, network minimization and
transfer learning [21]

• CRD: Contrastive Representation Distillation [17]

• LCKT, WCoRD: Wasserstein contrastive representation distillation [2]

• ReviewKD: Distilling Knowledge via Knowledge Review [3]

• SSKD: Knowledge Distillation Meets Self-Supervision [20]

11 Quantitative results on the achieved speed-up, memory
reduction and others

In the following three tables, we provide quantitative results on the achieved speed-up,
memory cost reduction, and other quantitative information about the teacher/student (T/S)
combinations used on CIFAR100 (in Tabs. 1 and 2) and those T/S combinations used on
ImageNet (Tabs. 4 and 8). The results are measured with Intel Core i7-8700 CPU on Ubuntu
20.04 operating system and memory cost is measured by Pytorch Profiler in a forward pass.

Additionally, we compare the size of the teacher dictionary in the proposed CoCoRD
with the size of the memory banks in CRD. Note that the keys in CRD memory banks are
only 128-d while the keys in the proposed CoCoRD teacher dictionary are 2048-d. Even with
higher dimensions of the stored keys, CoCoRD are still more storage efficient.
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Combination(T/S) Inference Latency (ms) Speed-up Memory Cost (MB) Mult-Add Parameters (K)

WRN-40-2 / WRN-16-2 21.28 / 7.98 62.50% 11.73 / 4.39 327.62M / 101.12M 2255 / 703

WRN-40-2 / WRN-40-1 21.28 / 10.51 50.61% 11.73 / 5.87 327.62M / 83.29M 2255 / 570

resnet56 / resnet20 21.75 / 11.48 47.22% 8.72 / 3.21 125.76M / 40.82M 862 / 278

resnet110 / resnet20 56.09 / 11.48 79.53% 16.97 / 3.21 253.16M / 40.82M 1737 / 278

resnet110 / resnet32 56.09 / 17.01 69.67% 16.97 / 5.05 253.16M / 69.13M 1737 / 473

resnet32x4 / resnet8x4 24.93 / 7.52 69.84% 20.71 / 6.03 1.08G / 177.07M 7434 / 1234

vgg13 / vgg8 8.72 / 3.89 55.39% 4.20 / 2.10 285.2M / 96.33M 9462 / 3965

Table 8: Quantitative results on the achieved speed-up, parameter compression and memory cost
reduction. The combinations are from Tab. 1 of the main paper. The inference latency is measured on
image of size 32x32.

Combination(T/S) Inference Latency (ms) Speed-up Memory Cost (MB) Mult-Add Parameters (K)

Vgg13 / MobileNetV2 8.72 / 14.97 - 4.20 / 3.39 285.2M / 6.54M 9462 / 813

ResNet50 / MobileNetV2 17.01 / 14.97 11.99% 3.63 / 3.39 83.67M / 6.54M 23713 / 813

ResNet50 / vgg8 17.01 / 3.89 77.13% 3.63 / 2.10 83.67M / 96.33M 23713 / 3965

resnet32x4 / ShuffleNetV1 24.93 / 31.84 - 20.71 / 13.90 1.08G / 38.72M 7434 / 949

resnet32x4 / ShuffleNetV2 24.93 / 19.01 23.75% 20.71 / 9.01 1.08G / 44.52M 7434 / 1356

WRN-40-2 / ShuffleNetV1 21.28 / 31.84 - 11.73 / 13.90 327.62M / 38.72M 2255 / 949

Table 9: Quantitative results on the achieved speed-up, parameter compression and memory cost
reduction. The combinations are from Tab. 2 of the main paper. The inference latency is measured on
image of size 32x32.

Combination(T/S) Inference Latency (ms) Speed-up Memory Cost (MB) Mult-Add Parameters (M)

ResNet34 / ResNet18 43.97 / 28.52 35.14% 59.82 / 39.75 3.66G / 1.81G 21.80 / 11.69

ResNet101 / ResNet50 104.37 / 50.84 51.29% 259.72 / 177.83 7.80G / 4.09G 44.55 / 25.56

Table 10: Quantitative results on the achieved speed-up, parameter compression and memory cost
reduction. The combinations are from Tabs. 4 and 6 of the main paper. The inference latency is
measured on image of size 224x224.

CRD CoCoRD Relative Size

CIFAR100 51.20MB 16.78MB 32.77%

ImageNet 1311.92MB 536.87MB 40.92%

Table 11: Comparison on the size of memory bank(s). Note that there is one teacher dictionary in the
proposed CoCoRD while there are two memory banks in CRD.

12 Theoretical study
Given two deep neural networks, a teacher f T and a student f S, and let x be the network
input. We denote representations at the penultimate layer as f T (x) and f S(x), respectively.
We would like to bring f S(xi) and f T (xi) close while pushing apart f S(xi) and f T (x j) (xi and
x j represent different training samples).

For clear notation, we define variables S and T for the student representations and the
teacher ones of the data, respectively: x ∼ p(x); S = f S(x); T = f T (x).

Let us define a distribution q with variable C. The latent variable C decides whether the
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tuple ( f S(xi), f T (x j)) is drawn form the joint distribution p(T,S) (when C=1) or drawn from
the product of marginal distributions p(S)p(T ) (when C=0).

q(T,S|C = 1) = p(T,S),q(T,S|C = 0) = p(T )p(S)

Suppose we are given 1 congruent pair drawn from the joint distribution (i.e. the same input
provided to T and S) for every N incongruent pairs drawn from the product of marginals
(independent randomly inputs provided to T and S). Then the priors on the latent C are:

q(C = 1) =
1

N +1
,q(C = 0) =

N
N +1

.

By Bayes’ rule and simple manipulations, the posterior for C = 1 is given by:

q(C = 1|T,S) = q(T,S|C = 1)q(C = 1)
q(T,S|C = 0)q(C = 0)+q(T,S|C = 1)q(C = 1)

=
p(T,S)

p(T,S)+N p(T )p(S)
.

We can observe a connection with mutual information:

logq(C = 1|T,S) =− log(1+N
p(T )p(S)

p(T,S)
)≤− log(N)+ log

p(T,S)
p(T )p(S)

.

Taking expectation on both sides w.r.t p(T,S) and rearranging gives us:

I(T ;S)≥ log(N)+Eq(T,S|C=1) logq(C = 1|T,S),

where I(T ;S) is the mutual information between the distributions of the teacher and student
representations. Though we do not know the true distribution q(C = 1|T,S), a neural network
can be used to estimate whether a pair comes from the joint distribution or the marginals.

By maximizing KL divergence between the joint distribution p(T,S) and the product
of marginal distributions p(T )p(S), we can maximize the mutual information between the
student representations and the teacher representations.
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