

Point Cloud Sampling Preserving Local Geometry

for Surface Reconstruction Kohei Matsuzaki and Keisuke Nonaka

KDDI Research, Inc.

Memory Efficiency

- 2

860

≥ 50

· The additional memory requirement for the

proposed method is only 2.8% (D=10).

3 4 5 6 7 8 9 10

Number of splits D

Introduction

Motivation

- · Surface reconstruction from point clouds with neural fields can faithfully reconstruct high-resolution geometry.
- · State-of-the-art methods have limited scalability for training due to memory requirements that increase with the size of the point cloud.

Our Goal

· Improving the scalability for training surface reconstruction networks with point cloud sampling.

Proposed Method

Pipeline

- Our method feeds a point cloud O sampled from the input point cloud P to the reconstruction network.
- · Split-and-merge approach suppresses the input size to the sampling network by splitting the input point cloud, and then merging all sampling results.

Sampling Network

- · The sampling network samples a point cloud Q' from a size-suppressed point cloud P' with a seed point s.
- The seed point is introduced to sample a point cloud from a partial region.

Training

· The sampling network is trained to minimize the weighted sum of a MSE loss \mathcal{L}_{mse} and a repulsion loss L_{rep} modified in a probabilistic manner.

Acknowledgement

 These research results were obtained from the commissioned research (No. 06801) by National Institute of Information and Communications Technology (NICT), Japan

Experiments

Reconstruction Performance

- · We compare with state-of-the-art sampling/simplification methods.
- · The proposed method achieves the best performance in all metrics.

Method	IoU↑	CD↓	NC↑	
Baseline	0.810	0.310	0.923	•
SampleNet	0.811	0.308	0.925	CD is scaled by 10 ² . ↑ (↓) denotes higher (lower) is better.
RPCS	0.840	0.306	0.936	
Ours	0.924	0.291	0.948	

Sampled Point Clouds

· The proposed method samples points intensively around the seed point (shown as a red point), while also sampling points far from it.

In the proposed method, various seed points are selected from the input points during training.

Reconstructed Surfaces

Compared with the other methods that have low accuracy for local geometry, the proposed method reconstructs surfaces more faithfully

Ground truth

Ours

Pipeline Initial Sampling Sampling Selecting \mathcal{L}_{rep} Network Seed L_{mse} Shared Merging Р Points Reconstruction Sampling + \mathcal{L}_{rec} Network Network Uniform Splitting 0 $\{\mathbf{P}'_i\}$ $\{\mathbf{Q}'_i\}$

Contributions

sampling network.

part of the scene.

memory footprint.

Propose a novel method to learn neural fields as a 3D surface

Propose a sampling network considering a seed point to sample

Introduce a split-and-merge approach that suppresses the input

size fed into the sampling network in order to avoid increasing the

points that represent both global structure and local geometry on a

representation using point clouds sampled with a learnable

≻

≻

≻

