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Reconstruction Performance
• We compare with state-of-the-art 

sampling/simplification methods.
• The proposed method achieves the best

performance in all metrics.

Sampled Point Clouds
• The proposed method samples points intensively around the seed point (shown as a red point), while 

also sampling points far from it.

• In the proposed method, various seed points are selected from the input points during training.

Reconstructed Surfaces
• Compared with the other methods that have low accuracy for local geometry, the proposed method 

reconstructs surfaces more faithfully.

Pipeline
• Our method feeds a point cloud Q 

sampled from the input point cloud P to 
the reconstruction network.

• Split-and-merge approach suppresses 
the input size to the sampling network 
by splitting the input point cloud, and 
then merging all sampling results.

Sampling Network
• The sampling network samples a point 

cloud Q′ from a size-suppressed point 
cloud P′ with a seed point s.

• The seed point is introduced to sample 
a point cloud from a partial region.

Training
• The sampling network is trained to 

minimize the weighted sum of a MSE
loss ℒmse and a repulsion loss 
ℒrep modified in a probabilistic manner.

Motivation
• Surface reconstruction from point clouds with neural fields can 

faithfully reconstruct high-resolution geometry.
• State-of-the-art methods have limited scalability for training due to 

memory requirements that increase with the size of the point cloud.

Our Goal
• Improving the scalability for training surface reconstruction networks 

with point cloud sampling.

Memory Efficiency
• The additional memory requirement for the 

proposed method is only 2.8% (𝐷𝐷=10).

• These research results were obtained from the commissioned research (No. 06801) by National Institute of Information and Communications 
Technology (NICT) , Japan.

Method IoU↑ CD↓ NC↑
Baseline 0.810 0.310 0.923
SampleNet 0.811 0.308 0.925
RPCS 0.840 0.306 0.936
Ours 0.924 0.291 0.948

CD is scaled by 102.
↑ (↓) denotes higher 
(lower) is better.

 Propose a novel method to learn neural fields as a 3D surface 
representation using point clouds sampled with a learnable 
sampling network.

 Propose a sampling network considering a seed point to sample 
points that represent both global structure and local geometry on a 
part of the scene.

 Introduce a split-and-merge approach that suppresses the input 
size fed into the sampling network in order to avoid increasing the 
memory footprint.
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