



### TL; DR

- We propose a new SBDT baseline, WASB.
- We introduce a new evaluation protocol using **5 SBDT** datasets from different sports ( 💽 🎾 🔍 🏐 👭 ). 6 SOTA **methods** are (re-)implemented for fair comparison. • Experiments show that WASB substantially outperforms
- **SBDT** SOTAs on all the datasets.



|                                                                       |            |        | )at |
|-----------------------------------------------------------------------|------------|--------|-----|
| <ul> <li>SBDT data</li> <li>Volleyball</li> <li>for Soccer</li> </ul> | and Bask   | cetbal |     |
|                                                                       | resolution | FPS    | gan |

|                    |                                                                                   |                                                        |                                                        | Train                                                  |                                                                                                                                                          |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                    | Test                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                       |
|--------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| resolution         | FPS                                                                               | games                                                  | clips                                                  | frames                                                 | disp.[pixel]                                                                                                                                             | games                                                                                                                                                                                                                                | clips                                                                                                                                                                                                                                              | frames                                                                                                                                                                                                                                                                             | disp.                                                                                                                                                                                                                                                                                                 |
| $1920 \times 1080$ | 25                                                                                | 1                                                      | 4                                                      | 11994                                                  | $10.4\pm10.0$                                                                                                                                            | 1                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                  | 5999                                                                                                                                                                                                                                                                               | $15.7 \pm 13.0$                                                                                                                                                                                                                                                                                       |
| $1280 \times 720$  | 30                                                                                | 7                                                      | 65                                                     | 14160                                                  | $15.3 \pm 13.0$                                                                                                                                          | 3                                                                                                                                                                                                                                    | 30                                                                                                                                                                                                                                                 | 5675                                                                                                                                                                                                                                                                               | $13.6 \pm 10.2$                                                                                                                                                                                                                                                                                       |
| $1280 \times 720$  | 30                                                                                | 26                                                     | 172                                                    | 78558                                                  | $11.8 \pm 12.2$                                                                                                                                          | 3                                                                                                                                                                                                                                    | 29                                                                                                                                                                                                                                                 | 12656                                                                                                                                                                                                                                                                              | $12.5 \pm 12.9$                                                                                                                                                                                                                                                                                       |
| $1280 \times 720$  | N/A                                                                               | 39                                                     | 3493                                                   | 143213                                                 | $14.4 \pm 11.4$                                                                                                                                          | 16                                                                                                                                                                                                                                   | 1337                                                                                                                                                                                                                                               | 54817                                                                                                                                                                                                                                                                              | $15.1 \pm 11.5$                                                                                                                                                                                                                                                                                       |
| $1920 \times 1080$ | N/A                                                                               | 70                                                     | 3392                                                   | 244224                                                 | $33.7\pm21.8$                                                                                                                                            | 11                                                                                                                                                                                                                                   | 432                                                                                                                                                                                                                                                | 31104                                                                                                                                                                                                                                                                              | $33.9 \pm 21.4$                                                                                                                                                                                                                                                                                       |
|                    | $1920 \times 1080$<br>$1280 \times 720$<br>$1280 \times 720$<br>$1280 \times 720$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | resolutionFPSgamesclipsframes $1920 \times 1080$ 251411994 $1280 \times 720$ 3076514160 $1280 \times 720$ 302617278558 $1280 \times 720$ N/A393493143213 | resolutionFPSgamesclipsframesdisp.[pixel] $1920 \times 1080$ 251411994 $10.4 \pm 10.0$ $1280 \times 720$ 3076514160 $15.3 \pm 13.0$ $1280 \times 720$ 302617278558 $11.8 \pm 12.2$ $1280 \times 720$ N/A393493143213 $14.4 \pm 11.4$ | resolutionFPSgamesclipsframesdisp.[pixel]games $1920 \times 1080$ 251411994 $10.4 \pm 10.0$ 1 $1280 \times 720$ 3076514160 $15.3 \pm 13.0$ 3 $1280 \times 720$ 302617278558 $11.8 \pm 12.2$ 3 $1280 \times 720$ N/A393493143213 $14.4 \pm 11.4$ 16 | resolutionFPSgamesclipsframesdisp.[pixel]gamesclips $1920 \times 1080$ 2514 $11994$ $10.4 \pm 10.0$ 12 $1280 \times 720$ 30765 $14160$ $15.3 \pm 13.0$ 330 $1280 \times 720$ 3026 $172$ $78558$ $11.8 \pm 12.2$ 329 $1280 \times 720$ N/A393493 $143213$ $14.4 \pm 11.4$ 16 $1337$ | resolutionFPSgamesclipsframesdisp.[pixel]gamesclipsframes $1920 \times 1080$ 2514 $11994$ $10.4 \pm 10.0$ 125999 $1280 \times 720$ 30765 $14160$ $15.3 \pm 13.0$ 3305675 $1280 \times 720$ 3026 $172$ 78558 $11.8 \pm 12.2$ 32912656 $1280 \times 720$ N/A393493 $143213$ $14.4 \pm 11.4$ 16133754817 |

 $\blacksquare$  6 SOTA SBDT methods, 2 of which ( $\bigstar$ ) are minorly updated by us - DeepBall [1], DeepBall-Large, BallSeg [2], TrackNetV2 [3], ResTrackNetV2, MonoTrack [4]

# Widely Applicable Strong Baseline (WASB) HRMs

- 1. High-Resolution Feature Extraction Model
  - High-Resolution Modules (HRMs) of small HRNet [5] - Stem without strides to feed higher-resolution
- features to HRMs
- Multi-In Multi-Out (MIMO) design (N = 3)

### 2. Position-Aware Model Training

- Train a model that predicts heatmaps representing ball positions
- Focal-loss [6] with binary ground truth (GT) during the first T epochs
- Quality focal loss [7] with real-valued GT during remaining T'epochs

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0    | 0    | 0    | 0    | 0    | 0 |
|---|---|---|---|---|---|---|---|------|------|------|------|------|---|
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0    | 0.73 | 0.86 | 0.73 | 0    | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0.73 | 1    | 1    | 1    | 0.73 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0.86 | 1    | 1    | 1    | 0.86 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0.73 | 1    | 1    | 1    | 0.73 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0    | 0.73 | 0.86 | 0.73 | 0    | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0    | 0    | 0    | 0    | 0    | 0 |

**Binary GT** 

### 3. A Bunch of Tricks during Inference

- online tracking with local motion model to take long-term temporal consistency into account
- [1] DeepBall: Deep Neural-Network Ball Detector, in VISAPP, 2019. [2] Real-time CNN-based Segmentation Architecture for Ball Detection in a Single View





# taset & Codebase

rent sport categories: 🕥 🎾 🔍 🏐 👭 are newly introduced by us , new annotations are provided

Original stem design in HRNet

**Real-valued GT** 

→ HRMs

| Proposed | stem | design |
|----------|------|--------|
|----------|------|--------|

| - | -   | <b>Q</b>  | ۲   | 8          |
|---|-----|-----------|-----|------------|
| - |     | <b>co</b> | 9   | <b>¢</b> 0 |
| - |     | -0-       | •   | •          |
|   | aft | ter       | aft | ter .      |

T epochs T + T' epochs

- prediction of each ball position (i.e., (x, y)-coordinate) as a center of heatmap values in a detected blob - oversampling the same image in different MIMO combinations to produce diverse detection candidates

> [5] Deep High-Resolution Representation Learning for Visual Recognition, in TPAMI, 2020. [6] Focal Loss for Dense Object Detection, in ICCV, 2017. [7] Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense

Object Detection, in NeurIPS, 2020.



# **Input**: a (sports) video clip, **Output**: a (x, y)-coordinate of a sports ball (if visible) for each frame









**W**NTT Communications Tokyo Metropolitan Univ.

| Badm | inton |      |      | Volle | yball |      | Basketball |      |      |      |  |
|------|-------|------|------|-------|-------|------|------------|------|------|------|--|
| Acc. | AP    | FPS  | F1   | Acc.  | AP    | FPS  | F1         | Acc. | AP   | FPS  |  |
| 38.6 | 60.0  | 57.1 | 64.4 | 50.7  | 49.2  | 21.1 | 0.0        | 12.9 | 0.0  | 30.3 |  |
| 36.8 | 59.5  | 53.0 | 70.4 | 57.5  | 56.5  | 21.1 | 57.2       | 47.5 | 36.6 | 30.9 |  |
| 72.2 | 68.4  | 75.0 | 19.5 | 17.5  | 8.5   | 18.2 | 16.8       | 20.5 | 5.3  | 29.5 |  |
| 85.6 | 83.6  | 77.0 | 83.6 | 73.8  | 72.3  | 17.6 | 78.8       | 69.3 | 64.6 | 28.0 |  |
| 84.0 | 82.2  | 71.3 | 84.2 | 74.7  | 74.7  | 28.6 | 77.9       | 68.2 | 66.0 | 38.2 |  |
| 85.9 | 84.9  | 75.5 | 85.1 | 75.9  | 72.1  | 19.7 | 80.8       | 71.3 | 65.3 | 32.1 |  |
| 87.0 | 88.5  | 70.4 | 86.5 | 77.9  | 79.9  | 18.0 | 80.6       | 71.3 | 71.5 | 30.2 |  |
| 89.0 | 91.6  | 34.3 | 88.0 | 80.0  | 83.2  | 15.8 | 82.6       | 73.4 | 77.1 | 22.3 |  |



Setup, in ACM MM Workshops, 2019.

<sup>[3]</sup> TrackNetV2: Efficient Shuttlecock Tracking Network, in ICPAI, 2020.

<sup>[4]</sup> MonoTrack: Shuttle Trajectory Reconstruction from Monocular Badminton Video, in CVPRW, 2022.